[1]孙晓晗,孔祥勇,吴滢,等.基于卷积神经网络的肾小球病理图像分类算法[J].中国医学物理学杂志,2022,39(10):1313-1320.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.023]
 SUN Xiaohan,KONG Xiangyong,WU Ying,et al.Glomerular pathological image classification algorithm based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(10):1313-1320.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.023]
点击复制

基于卷积神经网络的肾小球病理图像分类算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第10期
页码:
1313-1320
栏目:
医学人工智能
出版日期:
2022-11-02

文章信息/Info

Title:
Glomerular pathological image classification algorithm based on convolutional neural network
文章编号:
1005-202X(2022)10-1313-08
作者:
孙晓晗1孔祥勇1吴滢2王平3蔡健1彭瑞阳1王钰泽1
1.上海理工大学健康科学与工程学院, 上海 200093; 2.上海交通大学医学院附属儿童医院病理科, 上海 200040; 3.上海交通大学医学院附属儿童医院肾脏风湿免疫科, 上海 200040
Author(s):
SUN Xiaohan1 KONG Xiangyong1 WU Ying2 WANG Ping3 CAI Jian1 PENG Ruiyang1 WANG Yuze1
1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. Department of Pathology, Childrens Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China 3. Department of Nephrology and Rheumatology, Childrens Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
关键词:
卷积神经网络SE-ResNet图像分类肾小球病理图像
Keywords:
convolutional neural network SE-ResNet image classification glomerulus pathological image
分类号:
R318;TP391.7
DOI:
DOI:10.3969/j.issn.1005-202X.2022.10.023
文献标志码:
A
摘要:
病理切片中肾小球自动分类是诊断肾脏病变程度和病变类型的关键。为解决肾小球分类问题,设计了一个基于卷积神经网络的完整肾小球分类框架,选用SE-Resnet作为图像分类模型,将原有模块中卷积层改为参数量更小的卷积块,在保证网络性能的前提下减少网络参数。实验结果表明,相比于其他分类算法,该算法表现最优,在肾小球系膜细胞增生、肾小球新月体形成、肾小球局灶性节段性硬化、正常肾小球的分类任务中达到了96.93%的准确率,说明该分类算法能够较好地对肾小球病变进行识别。
Abstract:
Abstract: The automatic classification of glomeruli in pathological sections is the key to diagnose the degree and type of renal lesions. A complete glomerular classification framework based on convolutional neural network is designed for realizing glomerular classification. SE-Resnet is used as the image classification model to change the convolutional layer in the original module into convolution blocks with a smaller number of parameters, thereby reducing network parameters on the premise of ensuring network performance. The experimental results show that compared with other classification algorithms, the proposed algorithm has the optimal performance and achieves 96.93% accuracy in the classification of mesangial proliferative glomerulonephritis, crescentic glomerulonephritis, focal segmental glomerulosclerosis and normal glomeruli, indicating that the classification algorithm can better identify glomerular lesions.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(10):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(10):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[3]张俊,朱金汉,庄永东,等. 基于卷积神经网络CT/CBCT影像质量自动分析[J].中国医学物理学杂志,2018,35(5):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
 ZHANG Jun,ZHU Jinhan,ZHUANG Yongdong,et al. Automatic analysis of CT/CBCT image quality based on convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(10):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(10):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]申代友,库洪安,皮红英,等. 基于深度相机的老年跌倒监护系统[J].中国医学物理学杂志,2019,36(2):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
 SHEN Daiyou,KU Hongan,PI Hongying,et al. Depth camera-based fall detection system for the elderly[J].Chinese Journal of Medical Physics,2019,36(10):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(10):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]王自强,刘洪运,石金龙,等.基于卷积神经网络的心电图心博识别[J].中国医学物理学杂志,2019,36(8):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
 WANG Ziqiang,LIU Hongyun,SHI Jinlong,et al.ECG heartbeat recognition based on convolution neural network[J].Chinese Journal of Medical Physics,2019,36(10):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
[8]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(10):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[9]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(10):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[10]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
 JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(10):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]

备注/Memo

备注/Memo:
【收稿日期】2022-02-21 【基金项目】国家自然科学基金青年科学基金(61906121) 【作者简介】孙晓晗,硕士,研究方向:医疗人工智能、医学图像处理,E-mail: sxh916651551@163.com 【通信作者】孔祥勇,硕士,讲师,研究方向:医学人工智能、医疗大数据,E-mail: kxy@usst.edu.cn;吴滢,博士,研究方向:儿童肾脏病理诊断、药物性肾毒性机制,E-mail: wuy@shchildren.com.cn
更新日期/Last Update: 2022-10-27