相似文献/References:
[1]唐思源,刘燕茹,杨敏,等.基于CT图像的肺结节检测与识别[J].中国医学物理学杂志,2019,36(7):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
TANG Siyuan,LIU Yanru,YANG Min,et al.Detection and recognition of pulmonary nodules based on CT images[J].Chinese Journal of Medical Physics,2019,36(11):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
[2]张倩雯,陈明,秦玉芳,等.基于3D ResUnet网络的肺结节分割[J].中国医学物理学杂志,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
ZHANG Qianwen,CHEN Ming,QIN Yufang,et al.Lung nodule segmentation based on 3D ResUnet network[J].Chinese Journal of Medical Physics,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
[3]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(11):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
[4]曹宇,邢素霞,逄键梁,等.基于改进的VGG-16卷积神经网络的肺结节检测[J].中国医学物理学杂志,2020,37(7):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
CAO Yu,XING Suxia,PANG Jianliang,et al.Detection of pulmonary nodules based on improved VGG-16 convolution neural network[J].Chinese Journal of Medical Physics,2020,37(11):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
[5]王乾梁,石宏理.基于改进YOLO V3的肺结节检测方法[J].中国医学物理学杂志,2021,38(9):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
WANG Qianliang,SHI Hongli,et al.Pulmonary nodule detection based on improved YOLO V3[J].Chinese Journal of Medical Physics,2021,38(11):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
[6]周意龙,卫子然,蔡清萍,等.基于卷积神经网络胃癌分割与T分期算法[J].中国医学物理学杂志,2022,39(2):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]
ZHOU Yilong,WEI Ziran,CAI Qingping,et al.Gastric cancer segmentation and T staging algorithm based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(11):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]
[7]李启行,廖薇.基于注意力机制的生物医学文本分类模型[J].中国医学物理学杂志,2022,39(4):518.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.023]
LI Qihang,LIAO Wei.Biomedical text classification model based on attention mechanism[J].Chinese Journal of Medical Physics,2022,39(11):518.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.023]
[8]江悦莹,施一萍,翁晓俊,等.融合Vnet和边缘特征的肺结节分割算法[J].中国医学物理学杂志,2022,39(6):705.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.009]
JIANG Yueying,SHI Yiping,WENG Xiaojun,et al.Lung nodule segmentation algorithm integrating Vnet and boundary features[J].Chinese Journal of Medical Physics,2022,39(11):705.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.009]
[9]陈菁菁,李小霞,吕念祖.结合通道权重更新与密集残差金字塔空间注意力的皮肤病变分割方法[J].中国医学物理学杂志,2023,40(1):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]
CHEN Jingjing,LI Xiaoxia,L?Nianzu,et al.Skin lesion segmentation method combining channel weight update and dense residual pyramid spatial attention[J].Chinese Journal of Medical Physics,2023,40(11):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]
[10]王振华,刘阳星,赵晓雨,等.结合上下文和注意力机制改进的视盘分割模型[J].中国医学物理学杂志,2023,40(1):47.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.008]
WANG Zhenhua,LIU Yangxing,ZHAO Xiaoyu,et al.Optic disc segmentation model improved by contextual information and attention mechanism[J].Chinese Journal of Medical Physics,2023,40(11):47.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.008]
[11]刘涌涛,王宝珠,郭志涛.基于改进YOLOv7网络模型的肺结节检测算法[J].中国医学物理学杂志,2023,40(12):1509.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]
LIU Yongtao,WANG Baozhu,GUO Zhitao.Lung nodule detection algorithm using improved YOLOv7 network model[J].Chinese Journal of Medical Physics,2023,40(11):1509.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]
[12]张琼,杭益柳,邱建林,等.高效注意力金字塔网络在肺结节检测的应用[J].中国医学物理学杂志,2024,41(11):1361.[doi:DOI:10.3969/j.issn.1005-202X.2024.11.007]
ZHANG Qiong,HANG Yiliu,et al.Efficient attention feature pyramid network for pulmonary nodule detection[J].Chinese Journal of Medical Physics,2024,41(11):1361.[doi:DOI:10.3969/j.issn.1005-202X.2024.11.007]