[1]姚远星,王飞,刘文涵,等.基于多分支融合神经网络的心电图导联重构方法[J].中国医学物理学杂志,2023,40(2):196-201.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.012]
 YAO Yuanxing,WANG Fei,LIU Wenhan,et al.ECG signal reconstruction based on multi-layer feature fusion using neural network[J].Chinese Journal of Medical Physics,2023,40(2):196-201.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.012]
点击复制

基于多分支融合神经网络的心电图导联重构方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第2期
页码:
196-201
栏目:
医学信号处理与医学仪器
出版日期:
2023-03-03

文章信息/Info

Title:
ECG signal reconstruction based on multi-layer feature fusion using neural network
文章编号:
1005-202X(2023)02-0196-06
作者:
姚远星王飞刘文涵何进王豪常胜黄启俊
武汉大学物理科学与技术学院, 湖北 武汉 430072
Author(s):
YAO Yuanxing WANG Fei LIU Wenhan HE Jin WANG Hao CHANG Sheng HUANG Qijun
School of Physics and Technology, Wuhan University, Wuhan 430072, China
关键词:
心电图心电图重构卷积神经网络双向长短期记忆网络
Keywords:
electrocardiogram electrocardiogram signal reconstruction convolutional neural network bidirectional long short-term memory
分类号:
R318;R540.41
DOI:
DOI:10.3969/j.issn.1005-202X.2023.02.012
文献标志码:
A
摘要:
设计一种新型的多分支信息融合神经网络结构,利用已知的I,II,V2 3个导联心电信号来重构其它导联心电信号。基于卷积神经网络结构提取多个导联的特征然后进行线性相加融合,采用一种改进的双向长短期记忆网络结构来获得与时序相关的信息,从而实现心电图导联重构。使用Physikalisch Technische Bundesanstalt(PTB)数据库进行验证,导联重构方法具有0.944 4的相关系数和0.320 3的均方根误差,说明新型神经网络结构可以有效地实现心电图导联重构。
Abstract:
A novel neural network which can achieve multi-layer feature fusion is proposed for reconstructing the electrocardiogram (ECG) signals of other leads using the known ECG signals of leads I, II and V2. The features of multiple leads are extracted by convolutional neural network for linear combination, and an improved bidirectional long short-term memory network structure is used to obtain temporal sequence correlation which is then fused with the features obtained by convolutional neural network for realizing ECG signal reconstruction. The proposed method is verified with Physikalisch Technische Bundesanstalt database. The results show that the signal reconstruction method has a correlation coefficient of 0.944 4 and a low root-mean-square error of 0.320 3, which demonstrates the effectiveness of the novel neural network structure for ECG signal reconstruction.

相似文献/References:

[1]武会江,黄启俊,常胜,等.基于多项式参数拟合和支持向量机的心肌梗死识别算法[J].中国医学物理学杂志,2017,34(7):736.[doi:10.3969/j.issn.1005-202X.2017.07.017]
 [J].Chinese Journal of Medical Physics,2017,34(2):736.[doi:10.3969/j.issn.1005-202X.2017.07.017]
[2]王凯,杨枢. 基于自适应学习的心律失常心拍分类方法[J].中国医学物理学杂志,2019,36(1):92.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.018]
 WANG Kai,YANG Shu. Adaptive learning-based method for classification of arrhythmic heartbeats[J].Chinese Journal of Medical Physics,2019,36(2):92.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.018]
[3]梁伟玲,吴超,林建斌,等. 基于Arduino的无线心电信号采集系统设计与实现[J].中国医学物理学杂志,2019,36(6):715.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.019]
 LIANG Weiling,WU Chao,LIN Jianbin,et al. Design and implementation of wireless ECG signal acquisition system based on Arduino[J].Chinese Journal of Medical Physics,2019,36(2):715.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.019]
[4]王凯,杨枢,李超. 一种基于ECG的多层共轭对称Hadamard特征变换的房颤异常信号分类方法[J].中国医学物理学杂志,2019,36(9):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]
 WANG Kai,YANG Shu,LI Chao. ECG-based multi-level conjugate symmetric Hadamard feature transformation for classification of abnormal signals of atrial fibrillation[J].Chinese Journal of Medical Physics,2019,36(2):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]
[5]蔚文婧,王寻,张鹏远,等.一种基于多层感知器的房颤心电图检测方法[J].中国医学物理学杂志,2020,37(3):332.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.015]
 WEI Wenjing,WANG Xun,ZHANG Pengyuan,et al.Multilayer perceptron-based method for atrial fibrillation ECG detection[J].Chinese Journal of Medical Physics,2020,37(2):332.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.015]
[6]文翠,赵新军,张震洪,等.冠心病患者心电图ST段改变与多排螺旋CT冠状动脉成像的关系分析[J].中国医学物理学杂志,2020,37(8):1035.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.018]
 WEN Cui,ZHAO Xinjun,ZHANG Zhenhong,et al.Relationships between ECG ST-segment changes and multi-slice spiral CT coronary angiography in patients with coronary heart disease[J].Chinese Journal of Medical Physics,2020,37(2):1035.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.018]
[7]胡丹琴,蔡文杰.QRS复合波检测技术综述[J].中国医学物理学杂志,2020,37(9):1208.[doi:10.3969/j.issn.1005-202X.2020.09.024]
 HU Danqin,CAI Wenjie.Review on technologies for QRS complex detection[J].Chinese Journal of Medical Physics,2020,37(2):1208.[doi:10.3969/j.issn.1005-202X.2020.09.024]
[8]林卓琛,张晋昕.基于非参数相关系数的心肌病自动诊断[J].中国医学物理学杂志,2021,38(1):80.[doi:10.3969/j.issn.1005-202X.2021.01.014]
 LIN Zhuochen,ZHANG Jinxin.Automatic diagnosis of cardiomyopathy based on nonparametric correlation coefficient[J].Chinese Journal of Medical Physics,2021,38(2):80.[doi:10.3969/j.issn.1005-202X.2021.01.014]
[9]王新峰,漆梦玲,徐洪智.基于心电图的心肌梗死识别分类研究[J].中国医学物理学杂志,2022,39(8):992.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.013]
 WANG Xinfeng,QI Mengling,et al.ECG-based identification and classification of myocardial infarction[J].Chinese Journal of Medical Physics,2022,39(2):992.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.013]
[10]徐柏林,蔡文杰,杨明菲,等.基于改进U-Net模型的心电波形分割[J].中国医学物理学杂志,2022,39(10):1274.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.016]
 XU Bolin,CAI Wenjie,YANG Mingfei,et al.ECG waveform segmentation based on improved U-Net model[J].Chinese Journal of Medical Physics,2022,39(2):1274.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.016]

备注/Memo

备注/Memo:
【收稿日期】2022-10-18 【基金项目】国家自然科学基金(81971702, 61874079, 61574102, 61774113) 【作者简介】姚远星,硕士研究生,研究方向:医学信号处理,E-mail: 616195877@qq.com 【通信作者】黄启俊,教授,研究方向:医学信号处理及微电子系统设计,E-mail: huangqj@whu.edu.cn
更新日期/Last Update: 2023-03-03