[1]薛涛,吴迪,刘双童,等.直肠癌术前放疗危及器官与临床靶区自动勾画的可行性研究[J].中国医学物理学杂志,2022,39(7):799-804.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.002]
 XUE Tao,WU Di,LIU Shuangtong,et al.Feasibility study of automatic segmentation of organs-at-risk and clinical target area for preoperative radiotherapy for rectal cancer[J].Chinese Journal of Medical Physics,2022,39(7):799-804.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.002]
点击复制

直肠癌术前放疗危及器官与临床靶区自动勾画的可行性研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第7期
页码:
799-804
栏目:
医学放射物理
出版日期:
2022-07-15

文章信息/Info

Title:
Feasibility study of automatic segmentation of organs-at-risk and clinical target area for preoperative radiotherapy for rectal cancer
文章编号:
1005-202X(2022)07-0799-06
作者:
薛涛1吴迪1刘双童1卢晓岩2张恒2秦浩人3李海鹏3孙婉君2王辉1
1.天津市人民医院放疗科, 天津 300121; 2.天津市人民医院肿瘤科, 天津 300121; 3.天津中医药大学中西医结合学院, 天津 300193
Author(s):
XUE Tao1 WU Di1 LIU Shuangtong1 LU Xiaoyan2 ZHANG Heng2 QIN Haoren3 LI Haipeng3 SUN Wanjun2 WANG Hui1
1. Department of Radiotherapy, Tianjin Peoples Hospital, Tianjin 300121, China 2. Department of Oncology, Tianjin Peoples Hospital, Tianjin 300121, China 3. School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
关键词:
AccuContour自动勾画临床靶区危及器官直肠癌
Keywords:
Keywords: AccuContour automatic segmentation clinical target volume organ-at-risk rectal cancer
分类号:
R811.1
DOI:
DOI:10.3969/j.issn.1005-202X.2022.07.002
文献标志码:
A
摘要:
目的:探讨AccuContour软件及定制化自动勾画模型在直肠癌术前容积旋转调强放疗中临床靶区(CTV)和危及器官(OAR)自动勾画几何轮廓及剂量学各项参数精度,为临床应用提供依据。方法:回顾性选取133例已接受直肠癌术前容积旋转调强放疗的患者,随机分组,65例作为训练集,16例作为验证集,52例作为测试集,构建并训练自动勾画模型,将其导入AccuContour软件并自动勾画CTV和4个OAR,对比自动勾画与手动勾画在CTV和OAR几何轮廓的体积差异([ΔV])、Dice相似性系数(DSC)、Jaccard系数(JAC)、敏感性指数(SI)、包容性系数(lncl)、质心偏差(DC)、Hausdorff距离(HD)等,以及自动勾画与手动勾画CTV和OAR在同一容积旋转调强计划中所受照射剂量学参数差异,从而评估自动勾画效果。结果:CTV的DSC值、JAC值、SI值、lncl值为:0.84±0.06、0.72±0.08、0.81±0.07、0.87±0.08,[ΔV]值、DC值、HD值为:10.93%(4.56%, 15.37%)、5.03(3.27, 8.77) mm、15.03(15.00, 24.70) mm;OAR的DSC值、SI值、lncl值、JAC值、[ΔV]值、DC值、HD值比较优劣顺序依次为:右股骨头、左股骨头、膀胱、小肠;自动勾画与手工勾画剂量学参数对比中,除膀胱V30、小肠Dmean、CTV D95的差异有统计学意义外(P<0.05),其余均无统计学意义(P>0.05)。结论:在直肠癌术前容积旋转调强放疗中,本研究所采用的自动勾画系统,对于CTV和OAR的自动勾画有一定准确性,为临床医生节省大量时间,提高工作效率。
Abstract:
Abstract: Objective To explore the accuracy of AccuContour software and customized automatic segmentation model in automatically outlining the geometric contours of clinical target volume (CTV) and organs-at-risk (OAR) for the preoperative volumetric modulated arc therapy (VMAT) for rectal cancer, thereby providing a basis for clinical applications. Methods A total of 133 patients who have received preoperative VMAT for rectal cancer were enrolled retrospectively. Sixty-five cases of them were randomly selected for training set, 16 cases for validation set, and 52 cases for test set. The automatic segmentation model was established and trained, and then imported into AccuContour software for the automatic segmentations of CTV and 4 OAR. The automatic and manual segmentation results of CTV and OAR were compared in term of volume difference ([ΔV]), Dice similarity coefficient (DSC), Jaccard coefficient (JAC), sensitivity index (SI), inclusion coefficient (Incl), centroid deviation (DC) and Hausdorff distance (HD). Moreover, the differences of dosimetric parameters between automatically and manually delineated CTV and OAR in the same VMAT plan were compared, so as to evaluate the performance of automatic segmentation. Results The DSC, JAC, SI, and Incl of CTV were 0.84±0.06, 0.72±0.08, 0.81±0.07, 0.87±0.08, respectively, and the [ΔV], DC, and HD were 10.93% (4.56%, 15.37%), 5.03 (3.27, 8.77) mm, 15.03 (15.00, 24.70) mm, respectively. According to DSC, SI, Incl, JAC, [ΔV], DC, and HD, the OAR segmentation performance from superior to inferior were as followed: right femoral head, left femoral head, bladder, small intestine. There were no statistical differences between automatic and manual segmentations in the dosimetric parameters (P>0.05) except bladder V30, small intestine Dmean, and CTV D95 (P<0.05). Conclusion In preoperative VMAT for rectal cancer, the automatic segmentation system used in the study has a high accuracy for the automatic segmentation of CTV and OAR, which saves a lot of time for clinicians and improves work efficiency.

相似文献/References:

[1]吴虹,翟福山,刘明,等.应用CBCT研究膀胱体积大小对直肠癌术后放疗剂量学的影响[J].中国医学物理学杂志,2013,30(04):4253.[doi:10.3969/j.issn.1005-202X.2013.04.010]
[2]孙文钊,胡江,黄思娟,等.四种治疗计划系统中靶区边界外扩算法应用的比较研究[J].中国医学物理学杂志,2013,30(05):4369.[doi:10.3969/j.issn.1005-202X.2013.05.007]
[3]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(7):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[4]薛涛,吴迪,卢晓岩,等.RT-Mind自动勾画技术应用于鼻咽癌放射治疗可行性研究[J].中国医学物理学杂志,2022,39(6):661.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.001]
 XUE Tao,WU Di,LU Xiaoyan,et al.Feasibility of RT-Mind auto-segmentation technique in radiotherapy for nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2022,39(7):661.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.001]

备注/Memo

备注/Memo:
【收稿日期】2022-01-19 【基金项目】国家自然科学基金(81972847, 81573089) 【作者简介】薛涛,工程师,研究方向:肿瘤放射物理学,E-mail: tjxt1168@sina.com 【通信作者】王辉,博士,主任医师,研究方向:肿瘤放射治疗学,E-mail: ezxwanghui@163.com
更新日期/Last Update: 2022-07-15