[1]张明伟,张天逸,钟鸣,等.Stacking集成学习算法验证动脉损伤对糖尿病早期检测的意义[J].中国医学物理学杂志,2022,39(8):1003-1009.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.015]
 ZHANG Mingwei,ZHANG Tianyi,et al.Verifying the significance of arterial injury for early detection of diabetes by Stacking ensemble learning algorithm[J].Chinese Journal of Medical Physics,2022,39(8):1003-1009.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.015]
点击复制

Stacking集成学习算法验证动脉损伤对糖尿病早期检测的意义()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第8期
页码:
1003-1009
栏目:
医学信号处理与医学仪器
出版日期:
2022-08-04

文章信息/Info

Title:
Verifying the significance of arterial injury for early detection of diabetes by Stacking ensemble learning algorithm
文章编号:
1005-202X(2022)08-1003-07
作者:
张明伟12张天逸12钟鸣3程云章12
1.上海理工大学健康科学与工程学院, 上海 200093; 2.上海介入医疗器械工程技术研究中心, 上海 200093; 3.复旦大学附属中山医院, 上海 200032
Author(s):
ZHANG Mingwei1 2 ZHANG Tianyi1 2 ZHONG Ming3 CHENG Yunzhang1 2
1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. Shanghai Interventional Medical Device Engineering Technology Research Center, Shanghai 200093, China 3. Zhongshan Hospital, Fudan University, Shanghai 200032, China
关键词:
糖尿病脉搏信号小波分解集成算法动脉损伤
Keywords:
Keywords: diabetes pulse signal wavelet decomposition ensemble algorithm arterial injury
分类号:
R318;R587.1
DOI:
DOI:10.3969/j.issn.1005-202X.2022.08.015
文献标志码:
A
摘要:
背景:糖尿病可引起广泛的动脉结构和功能病理变化,导致动脉僵硬度增加、顺应性降低和动脉弹性降低。本研究从动脉损伤的角度,实现对尚未出现临床表现但有动脉损伤的糖尿病患者的早期检测。方法:动脉损伤会导致血管的力学参数发生变化,而脉搏信号的波形变化与心血管系统的力学参数变化密切相关。通过9级小波对糖尿病患者脉搏信号进行分解,提取cD8、cD7、cD6系数(中高频成分,代表信号细节特征),作为能够反映动脉损伤程度的特征,将特征矩阵输入到10折交叉验证模型的Stacking集成学习模型中,设置第一层的4个基学习器为SVM、Random Forest、XGBoost、Extra Trees,第二层的元学习器是KNN。结果:单个机器学习模型可以达到90%以上的准确率。Stacking集成学习算法的准确率比单一机器学习模型高4%~5%,ROC曲线下面积提高1%~6%。结论:小波分解得到的脉搏信号cD8、cD7、cD6系数可以有效反映糖尿病引起的动脉损伤程度,因此动脉损伤对糖尿病的早期检测具有一定的指导意义。Stacking 集成学习算法将多个模型的优势结合起来生成一个新模型,可以获得比单一模型更好的性能。
Abstract:
Abstract: Background Diabetes can cause extensive pathological changes in the structure and function of arteries, leading to increased arterial stiffness, decreased compliance, and decreased arterial elasticity. From the perspective of arterial injury, this study aims to realize the early detection of diabetes in patients who have not yet appeared clinical manifestations of diabetes but have arterial injury. Methods Arterial injury leads to mechanical parameters changes in the vascular system. The waveform changes of pulse signals are closely related to mechanical parameters changes in the cardiovascular system. By decomposing the pulse signals of diabetic patients with 9-level wavelet, cD8, cD7 and cD6 coefficients (medium-high frequency components, representing the features in signal details) were extracted as features that reflect the degree of arterial injury. The feature matrix was input into the Stacking ensemble learning algorithm of the 10-fold cross-validation model, with SVM, Random Forest, XGBoost and Extra Trees as the 4 base-learners of the first layer, and KNN as the meta-learner of the second layer. Results A single machine learning model could achieve an accuracy higher than 90%. Stacking ensemble learning algorithm was 4%-5% higher than a single machine learning model in accuracy, and 1%-6% higher in area under the ROC curve (AUC). Conclusion The cD8, cD7, and cD6 coefficients of pulse signals obtained by wavelet decomposition can effectively reflect the degree of arterial injury caused by diabetes. Therefore, arterial injury has certain guiding significance for the early detection of diabetes. Stacking ensemble learning algorithm that combines the advantages of multiple models to generate a new model can achieve better performance than single models.

相似文献/References:

[1]雍军光,阮 萍,沈洪涛,等.新型显微成像与分析系统在糖尿病患者红细胞定量研究中的应用[J].中国医学物理学杂志,2014,31(04):5081.[doi:10.3969/j.issn.1005-202X.2014.04.023]
[2]赵承奇,雷涛,罗二平,等.脉冲电磁场对糖尿病大鼠外周神经病变的影响[J].中国医学物理学杂志,2013,30(05):4431.[doi:10.3969/j.issn.1005-202X.2013.05.021]
[3]苑旺,梁媛媛,崔黎丽,等.正极性聚丙烯驻极体对糖尿病大鼠皮肤结构的影响[J].中国医学物理学杂志,2015,32(06):835.[doi:doi:10.3969/j.issn.1005-202X.2015.06.016]
 [J].Chinese Journal of Medical Physics,2015,32(8):835.[doi:doi:10.3969/j.issn.1005-202X.2015.06.016]
[4]余丽玲,陈婷,金浩宇,等.基于支持向量机和自回归积分滑动平均模型组合的血糖值预测[J].中国医学物理学杂志,2016,33(4):381.[doi:10.3969/j.issn.1005-202X.2016.04.012]
 [J].Chinese Journal of Medical Physics,2016,33(8):381.[doi:10.3969/j.issn.1005-202X.2016.04.012]
[5]花琦琦,刘新凤,焦青,等.基于SQL Server的糖尿病信息管理与分析系统[J].中国医学物理学杂志,2016,33(11):1183.[doi:10.3969/j.issn.1005-202X.2016.11.020]
 [J].Chinese Journal of Medical Physics,2016,33(8):1183.[doi:10.3969/j.issn.1005-202X.2016.11.020]
[6]楚轶,冯品,张薇,等. 稳恒磁场刺激对糖尿病动脉粥样硬化大鼠血清和主动脉中VEGF、TGF-β1、TNF-α和IL-6表达的影响[J].中国医学物理学杂志,2017,34(10):1045.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.016]
 [J].Chinese Journal of Medical Physics,2017,34(8):1045.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.016]
[7]郭一冰,崔栋,薛雅卓,等. 糖尿病行为量表计算工具箱的研制[J].中国医学物理学杂志,2018,35(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.015]
 GUO Yibing,CUI Dong,XUE Yazhuo,et al. Development of diabetes behavioral scale calculation toolbox[J].Chinese Journal of Medical Physics,2018,35(8):195.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.015]
[8]丑永新,祁春阳,金逸,等. 基于Hilbert-Huang变换的脉率变异性提取方法[J].中国医学物理学杂志,2018,35(4):425.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.011]
 CHOU Yongxin,QI Chunyang,JIN Yi,et al. A Hilbert-Huang transform-based pulse rate variability extraction method[J].Chinese Journal of Medical Physics,2018,35(8):425.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.011]
[9]张嘉阳,黄河,刘子怡,等. 基于Gabor滤波器的糖尿病视网膜新生血管检测[J].中国医学物理学杂志,2018,35(8):968.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.019]
 ZHANG Jiayang,HUANG He,LIU Ziyi,et al. Gabor filter-based detection of neovascularization due to diabetic retinopathy[J].Chinese Journal of Medical Physics,2018,35(8):968.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.019]
[10]陈真诚,杜莹,邹春林,等. 基于K-Nearest Neighbor和神经网络的糖尿病分类研究[J].中国医学物理学杂志,2018,35(10):1220.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]
 CHEN Zhencheng,DU Ying,ZOU Chunlin,et al. Classification of diabetes based on K-Nearest Neighbor and neural network[J].Chinese Journal of Medical Physics,2018,35(8):1220.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]

备注/Memo

备注/Memo:
【收稿日期】2022-02-19 【基金项目】上海市公共卫生体系建设3年行动计划(2020-2022年)学科带头人计划项目(GWV-10.2-XD32);上海市“科技创新行动计划”生物医药科技支撑专项(20S31905100);上海工程技术研究中心资助项目(18DZ2250900) 【作者简介】张明伟,硕士研究生,E-mail: 1294851516@qq.com 【通信作者】程云章,教授,博士生导师,E-mail: cyz2008@usst.edu.cn
更新日期/Last Update: 2022-09-05