[1]王萍,徐凯成,张一弛,等.基于反注意力机制U-Net网络的胃部肿瘤分割[J].中国医学物理学杂志,2022,39(9):1133-1139.[doi:DOI:10.3969/j.issn.1005-202X.2022.09.013]
 WANG Ping,XU Kaicheng,ZHANG Yichi,et al.Gastric tumor segmentation by U-Net based on reverse attention mechanism[J].Chinese Journal of Medical Physics,2022,39(9):1133-1139.[doi:DOI:10.3969/j.issn.1005-202X.2022.09.013]
点击复制

基于反注意力机制U-Net网络的胃部肿瘤分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第9期
页码:
1133-1139
栏目:
医学影像物理
出版日期:
2022-11-02

文章信息/Info

Title:
Gastric tumor segmentation by U-Net based on reverse attention mechanism
文章编号:
1005-202X(2022)09-1133-07
作者:
王萍1徐凯成2张一弛2王海玲2蔡清萍3卫子然3胡尊琪3
1.上海工程技术大学继续教育学院, 上海 201620; 2.上海工程技术大学电子电气工程学院, 上海 201620; 3.上海长征医院肠胃外科, 上海 200003
Author(s):
WANG Ping1 XU Kaicheng2 ZHANG Yichi2 WANG Hailing2 CAI Qingping3 WEI Ziran3 HU Zunqi3
1. School of Continuing Education, Shanghai University of Engineering Science, Shanghai 201620, China 2. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 3. Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, Shanghai 200003, China
关键词:
胃部肿瘤分割深度学习图像处理反注意力机制U-Net网络
Keywords:
Keywords: gastric tumor segmentation deep learning image processing reverse attention mechanism U-Net
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2022.09.013
文献标志码:
A
摘要:
首先利用全局与局部注意力对肿瘤进行定位,然后在模型中加入反注意力机制,将显著特征从原特征图中消除,并保留肿瘤的边缘轮廓信息。此外还在模型中使用深度监督,监督各个深度解码层的训练,有效抑制模型梯度消失现象,提高分割的准确性。本研究使用的是上海长征医院的胃部CT数据集,并将提出的模型与U-Net、Attention U-Net和ET-Net的实验对比。研究结果表明,相较于传统的U-Net网络模型,基于反注意力机制的U-Net模型在胃部肿瘤分割中性能得到了较大的提高,证明了该网络模型的有效性。
Abstract:
Abstract: The global and local attention mechanisms are used to localize tumor, and a reverse attention mechanism is added to the model to remove the salient features from the original feature map while retaining the edge contour information. In addition, deep supervision is also applied to supervise the training of each deep decoding layer, which effectively suppresses gradient disappearance and enhances segmentation accuracy. The gastric CT data set used in the study is from Shanghai Changzheng Hospital. The performance of U-Net model with reverse attention mechanism in gastric tumor segmentation has been greatly improved when compared with the traditional U-Net networks (U-net, Attention U-net and ET-Net), which proves the effectiveness of the proposed model.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(9):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(9):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(9):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(9):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(9):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(9):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(9):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(9):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(9):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]

备注/Memo

备注/Memo:
【收稿日期】2022-04-15 【基金项目】上海市科学技术委员会科研计划项目(18411952800) 【作者简介】王萍,硕士,助理研究员,研究方向:智慧医疗与管理,E-mail: 00150001@sues.edu.cn 【通信作者】王海玲,博士,讲师,研究方向:智慧医疗、人工智能,E-mail: wanghailing@sues.edu.cn
更新日期/Last Update: 2022-09-27