[1]王一飞,刘光浚,刘轩吉,等.基于神经网络的脉搏波信号血压检测算法[J].中国医学物理学杂志,2022,39(8):998-1002.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.014]
 WANG Yifei,LIU Guangjun,LIU Xuanji,et al.Neural network-based blood pressure detection algorithms for pulse wave signals[J].Chinese Journal of Medical Physics,2022,39(8):998-1002.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.014]
点击复制

基于神经网络的脉搏波信号血压检测算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第8期
页码:
998-1002
栏目:
医学信号处理与医学仪器
出版日期:
2022-08-04

文章信息/Info

Title:
Neural network-based blood pressure detection algorithms for pulse wave signals
文章编号:
1005-202X(2022)08-0998-05
作者:
王一飞1刘光浚1刘轩吉1陈占春12张英栋3
1.太原理工大学机械与运载工程学院, 山西 太原 030024; 2.山西省塑料机械工程虚拟仿真实验教学中心, 山西 太原 030024; 3.山西省中西医结合医院中医内科, 山西 太原030013
Author(s):
WANG Yifei1 LIU Guangjun1 LIU Xuanji1 CHEN Zhanchun12 ZHANG Yingdong3
1.College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2.Plastic Machinery Engineering Virtual Simulation Experiments Teaching Center of Shanxi Province, Taiyuan 030024, China 3. TCM Internal Medicine, Shanxi Hospital of Integrated Traditional Chinese and Western Medicine, Taiyuan 030013, China
关键词:
血压脉搏波特征参数神经网络
Keywords:
Keywords: blood pressure pulse wave characteristic parameter neural network
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.08.014
文献标志码:
A
摘要:
脉搏波信号蕴含大量的人体生理与病理信息,与血压的变化息息相关,利用其特征参数可以无创连续检测血压。神经网络因其极强的学习能力、泛化能力以及可以充分逼近任意复杂的非线性关系而被应用于脉搏波血压提取算法中。本研究介绍了脉搏波特征参数,并简述了基于脉搏波特征参数进行血压测量的研究进展,详细叙述了基于神经网络的脉搏波特征参数血压检测算法,最后对不同神经网络模型的优缺点进行分析,并对基于神经网络的脉搏波特征参数血压监测算法的研究方向进行展望。
Abstract:
Abstract: The pulse wave signal contains a large amount of human physiological and pathological information which is closely related to the changes of blood pressure. The blood pressure can be measured continuously and noninvasively using the characteristic parameters of pulse wave signals. Neural network is used in pulse wave blood pressure extraction algorithm because of its strong learning ability, generalization ability and the ability to fully approximate any complex nonlinear relationship. Herein the characteristic parameters of pulse wave are introduced. The advances in research of blood pressure measurement based on the pulse wave characteristic parameters are briefly described, and the neural network-based blood pressure detection algorithm using the pulse wave characteristic parameters is described in details. Finally, the advantages and disadvantages of the network model are analyzed, and the research direction of the neural network-based blood pressure monitoring algorithm using the pulse wave characteristic parameters is discussed.

相似文献/References:

[1]郭垚垚,陈兆学.一种脉搏波和心电信号时域基线漂移消除方法[J].中国医学物理学杂志,2016,33(2):167.[doi:10.3969/j.issn.1005-202X.2016.02.012]
 [J].Chinese Journal of Medical Physics,2016,33(8):167.[doi:10.3969/j.issn.1005-202X.2016.02.012]
[2]苏志刚,朱海玲,郝敬堂. 基于高斯混合模型的脉搏波特征提取方法[J].中国医学物理学杂志,2018,35(1):76.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.014]
 SU Zhigang,ZHU Hailing,HAO Jingtang. Gaussian mixture model-based method for extracting the features of pulse wave[J].Chinese Journal of Medical Physics,2018,35(8):76.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.014]
[3]曾俊,吕红艳,李承红,等. 基于Android手机的生理参数移动监测系统[J].中国医学物理学杂志,2018,35(10):1187.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.015]
 ZENG Jun,LÜ,Hongyan,et al. Physiology parameter monitoring system based on Android mobile phone[J].Chinese Journal of Medical Physics,2018,35(8):1187.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.015]
[4]苏志刚,吕江波,郝敬堂. 基于平滑先验法去除脉搏波基线漂移[J].中国医学物理学杂志,2018,35(10):1197.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.017]
 SU Zhigang,LÜ,Jiangbo,et al. Removal of baseline drift of pulse wave based on smoothness prior[J].Chinese Journal of Medical Physics,2018,35(8):1197.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.017]
[5]陈倩蓉,梁永波,赵飞骏,等. 基于心电-脉搏波的心血管疾病识别研究[J].中国医学物理学杂志,2019,36(2):210.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
 CHEN Qianrong,LIANG Yongbo,ZHAO Feijun,et al. Cardiovascular disease recognition based on electrocardiogram data and pulse wave[J].Chinese Journal of Medical Physics,2019,36(8):210.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
[6]程敏,陈兆学. 基于指端脉搏波视频信号的心率稳定检测算法[J].中国医学物理学杂志,2019,36(2):215.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.018]
 CHENG Min,CHEN Zhaoxue. An algorithm based on video signals of pulse waves on the finger tip for stable detection of heart rates[J].Chinese Journal of Medical Physics,2019,36(8):215.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.018]
[7]鲍凯林,陈兆学.基于多尺度样本熵方法分析欧拉视频放大技术在非接触式测量的作用[J].中国医学物理学杂志,2020,37(5):635.[doi:10.3969/j.issn.1005-202X.2020.05.020]
 BAO Kailin,CHEN Zhaoxue.Application of Euler video amplification technology in non-contact measurement: an analysis basedon multi-scale sample entropy[J].Chinese Journal of Medical Physics,2020,37(8):635.[doi:10.3969/j.issn.1005-202X.2020.05.020]
[8]郑嘉强,程云章,边俊杰.基于脉搏波特征参数的无创连续血压测量研究进展[J].中国医学物理学杂志,2020,37(6):749.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.017]
 ZHENG Jiaqiang,CHENG Yunzhang,BIAN Junjie.Advances in non-invasive continuous blood pressure measurement based on characteristic parameters of pulse wave[J].Chinese Journal of Medical Physics,2020,37(8):749.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.017]
[9]张浩强,安蒙蒙,卜朝晖,等.基于超声回波信号的指端脉搏波提取[J].中国医学物理学杂志,2020,37(10):1306.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.016]
 ZHANG Haoqiang,AN Mengmeng,BU Zhaohui,et al.Fingertip pulse wave extraction based on ultrasonic echo signal[J].Chinese Journal of Medical Physics,2020,37(8):1306.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.016]
[10]郑传权,黄雄京,刘博生,等.基于脉搏波传导时间的血压测量方法[J].中国医学物理学杂志,2021,38(7):846.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.011]
 ZHENG Chuanquan,HUANG Xiongjing,et al.Blood pressure measurement method based on pulse transit time[J].Chinese Journal of Medical Physics,2021,38(8):846.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.011]

备注/Memo

备注/Memo:
【收稿日期】2022-02-24 【基金项目】山西省自然科学基金(201801D121172) 【作者简介】王一飞,硕士研究生,研究方向:机器视觉,E-mail: 15388510285@163.com 【通信作者】陈占春,博士,副教授,研究方向:机器视觉、脉象识别,E-mail: chenzhanchun2003@163.com
更新日期/Last Update: 2022-09-05