[1]郑康,袁瑜含,谷雪莲,等.基于视觉词袋模型的亚损伤红细胞识别[J].中国医学物理学杂志,2022,39(4):469-474.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.014]
 ZHENG Kang,YUAN Yuhan,GU Xuelian,et al.Identification of sublethally damaged red blood cells based on bag-of-visual words model[J].Chinese Journal of Medical Physics,2022,39(4):469-474.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.014]
点击复制

基于视觉词袋模型的亚损伤红细胞识别()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第4期
页码:
469-474
栏目:
医学影像物理
出版日期:
2022-04-27

文章信息/Info

Title:
Identification of sublethally damaged red blood cells based on bag-of-visual words model
文章编号:
1005-202X(2022)04-0469-06
作者:
郑康袁瑜含谷雪莲鲍睿郑钰杨玉菊
上海理工大学医疗器械与食品学院, 上海 200093
Author(s):
ZHENG Kang YUAN Yuhan GU Xuelian BAO Rui ZHENG Yu YANG Yuju
School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
关键词:
亚损伤红细胞视觉词袋模型支持向量机自动识别
Keywords:
Keywords: sublethally damaged red blood cell bag-of-visual words model support vector machine automatic identification
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.04.014
文献标志码:
A
摘要:
根据亚损伤红细胞的形态学变化,提出一种自动识别亚损伤红细胞的方法。采用体外循环过程中的血细胞图像,包括2 763张亚损伤红细胞图像和2 507张正常红细胞,利用视觉词袋作为红细胞特征提取方法,分别选用多项核、高斯核、Sigmoid核函数的支持向量机模型。采用5折交叉验证方法验证方法的性能,并选取精确度、召回率、F1评分作为评价指标。结果表明3种不同内核模型的识别准确率分别为91.05%±0.82%、94.16%±0.50%、85.60%±0.94%。本研究提出的方法有效区别了亚损伤红细胞,为亚致死性损伤检测提供自动化方案。
Abstract:
Abstract: A method for the automatic identification of sublethally damaged red blood cells (RBC) according to their morphological changes is proposed. The images of blood cells during cardiopulmonary bypass are analyzed in the study, including 2 763 images of sublethally damaged RBC and 2 507 images of normal RBC. The bag-of-visual words is used as the feature extraction method of RBC, and the support vector machine models of polynomial kernel, Gaussian kernel and Sigmoid kernel function are selected separately. A 5-fold cross validation method is adopted to verify the performance of the method, taking precision rate, recall rate and F1 score as evaluation indexes. The results show that the identification accuracies under 3 different kernel models are 91.05%±0.82%, 94.16%±0.50% and 85.60%±0.94%, respectively. The proposed method can effectively distinguish the sublethally damaged RBC and provide a scheme for the automatic identification of sublethally damaged RBC.

备注/Memo

备注/Memo:
【收稿日期】2021-10-24 【基金项目】上海市生物医学工程研究生示范实践基地(1017308011) 【作者简介】郑康,硕士在读,研究方向:机器学习、生物医学图像,E-mail: Zachary_k@163.com 【通信作者】谷雪莲,博士,副教授,研究方向:微创外科技术与器械研发,E-mail: guxuelian@usst.edu.cn
更新日期/Last Update: 2022-04-27