[1]申思源,罗冬梅.糖尿病视网膜病变的风险揭示与关键因素分析[J].中国医学物理学杂志,2022,39(6):783-787.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.021]
 SHEN Siyuan,LUO Dongmei.Risk disclosure and key factors analysis of diabetic retinopathy[J].Chinese Journal of Medical Physics,2022,39(6):783-787.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.021]
点击复制

糖尿病视网膜病变的风险揭示与关键因素分析()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第6期
页码:
783-787
栏目:
其他(激光医学等)
出版日期:
2022-06-27

文章信息/Info

Title:
Risk disclosure and key factors analysis of diabetic retinopathy
文章编号:
1005-202X(2022)06-0783-05
作者:
申思源罗冬梅
安徽工业大学数理科学与工程学院, 安徽 马鞍山 243002
Author(s):
SHEN Siyuan LUO Dongmei
School of Mathematics and Physics, Anhui University of Technology, Maanshan 243002, China
关键词:
糖尿病视网膜病变互信息组合模型Stacking方法风险预测
Keywords:
Keywords: diabetic retinopathy mutual information combination model Stacking method risk prediction
分类号:
R318;R587.1
DOI:
DOI:10.3969/j.issn.1005-202X.2022.06.021
文献标志码:
A
摘要:
目的:通过构建组合模型对糖尿病并发视网膜病变(DR)的患病风险进行预测,为DR的预防和诊断提供参考。方法:基于3 000例糖尿病患者的生化检测数据,运用互信息作为评价标准筛选出与DR有关的特征因素,将其作为入模变量构建5种常见的模型,以准确率、精确率、召回率和AUC作为评价标准筛选出预测能力较优的3种模型,并运用Stacking方法构建组合模型。结果:通过互信息筛选出39个特征因素,发现随机森林模型、SVM模型以及Logistic回归模型这3种模型表现较优;构建的3种组合模型中,发现以SVM、Logistic为初级分类器,随机森林为次级分类器的组合模型预测能力最好,其AUC高达0.877。结论:组合模型相比单一模型具有更好的DR风险预测能力,更有助于DR的临床诊断。
Abstract:
Abstract: Objective To construct combination models for the risk prediction of diabetic retinopathy (DR), thereby providing a reference for the prevention and diagnosis of DR. Methods Based on the biochemical test data of 3 000 diabetic patients, the characteristic factors related to DR which were screened out by taking mutual information as the evaluation criterion were input as the modeling variables to construct 5 common models. According to the evaluation criteria of accuracy rate, precision rate, recall rate and AUC, 3 models with the superior prediction ability were screened out for model combination by Stacking method. Results A total of 39 characteristic factors were screened out through mutual information. The prediction performances of random forest model, SVM model and Logistic regression model were better. Among 3 combination models constructed, it was found that the combination model with SVM and Logistic as the primary classifier and random forest as the secondary classifier had the optimal prediction ability, and its AUC was as high as 0.877. Conclusion The combination model is superior to the single model in predicting DR risk, and is helpful for the clinical diagnosis of DR.

相似文献/References:

[1]张 健,岳海振,张艺宝,等.CT与CBCT图像配准范围选择的对比研究[J].中国医学物理学杂志,2015,32(01):21.[doi:10.3969/j.issn.1005-202X.2015.01.006]
[2]王远军,周密,查珊珊,等.多模态医学图像配准技术研究[J].中国医学物理学杂志,2013,30(03):4125.[doi:10.3969/j.issn.1005-202X.2013.03.010]
[3]吴茜,皮一飞,周解平.CT/MRI混合配准方法及其在放疗计划系统中的应用[J].中国医学物理学杂志,2020,37(9):1148.[doi:10.3969/j.issn.1005-202X.2020.09.013]
 WU Qian,PI Yifei,ZHOU Jieping.CT/MRI hybrid registration and its application in treatment planning system[J].Chinese Journal of Medical Physics,2020,37(6):1148.[doi:10.3969/j.issn.1005-202X.2020.09.013]
[4]贾婷婷,董朝轶,马爽,等.基于互信息特征提取的运动想象脑机接口[J].中国医学物理学杂志,2022,39(1):63.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.011]
 JIA Tingting,DONG Chaoyi,et al.Brain-computer interface of motion imagery based on mutual information-based feature extraction[J].Chinese Journal of Medical Physics,2022,39(6):63.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.011]
[5]蒋杰伟,雷舒陶,耿苗苗,等.融合可解释性特征的糖尿病视网膜病变自动诊断[J].中国医学物理学杂志,2022,39(5):640.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.020]
 JIANG Jiewei,LEI Shutao,GENG Miaomiao,et al.Automatic diagnosis of diabetic retinopathy based on interpretable features fusion[J].Chinese Journal of Medical Physics,2022,39(6):640.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.020]
[6]杨东旭,赵红东,耿立新,等.双线性非局部特征结合中继监督网络用于视网膜血管分割[J].中国医学物理学杂志,2022,39(12):1516.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.010]
 YANG Dongxu,ZHAO Hongdong,GENG Lixin,et al.Bilinear non-local features combined with intermediate supervision network for retinal vessel segmentation[J].Chinese Journal of Medical Physics,2022,39(6):1516.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.010]
[7]曹佳悦,罗冬梅.基于Null Importance与GS-LGBM的糖尿病视网膜病变因素分析与风险预测[J].中国医学物理学杂志,2023,40(8):1033.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.018]
 CAO Jiayue,LUO Dongmei.Risk factors analysis and prediction of diabetic retinopathy based on Null Importance and GS-LGBM[J].Chinese Journal of Medical Physics,2023,40(6):1033.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.018]
[8]王志鲁,池越,周亚同,等.融合密集空洞注意力金字塔和多尺度的视网膜病变分割[J].中国医学物理学杂志,2024,41(8):1000.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.013]
 WANG Zhilu,CHI Yue,ZHOU Yatong,et al.Diabetic retinopathy segmentation using dense dilated attention pyramid and multi-scale features[J].Chinese Journal of Medical Physics,2024,41(6):1000.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.013]
[9]王文静,张莉钏,王欣,等.融合改进Retinex图像增强与深度学习的糖尿病视网膜分类检测方法[J].中国医学物理学杂志,2024,41(9):1086.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.005]
 WANG Wenjing,ZHANG Lichuan,WANG Xin,et al.Classification and detection method for diabetic retinopathy based on the combination of improved Retinex image enhancement and deep learning[J].Chinese Journal of Medical Physics,2024,41(6):1086.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.005]

备注/Memo

备注/Memo:
【收稿日期】2021-12-02 【基金项目】国家级创新创业训练项目(201910360121);安徽省自然科学基金(1808085MG220);安徽省教学研究项目(2020jyxm0238) 【作者简介】申思源,研究方向:机器学习,E-mail: 2391479819@qq.com 【通信作者】罗冬梅,博士,讲师,研究方向:数据科学,E-mail: luodmahut@126.com
更新日期/Last Update: 2022-06-27