[1]吴拾瑶,随力,杨兰,等.运动想象重塑脑功能的研究进展[J].中国医学物理学杂志,2021,38(11):1449-1452.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.023]
 WU Shiyao,SUI Li,YANG Lan,et al.Research advances in motor imagery for remodeling brain functions[J].Chinese Journal of Medical Physics,2021,38(11):1449-1452.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.023]
点击复制

运动想象重塑脑功能的研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第11期
页码:
1449-1452
栏目:
脑科学与神经物理
出版日期:
2021-11-26

文章信息/Info

Title:
Research advances in motor imagery for remodeling brain functions
文章编号:
1005-202X(2021)11-1449-04
作者:
吴拾瑶随力杨兰刘亮
上海理工大学医疗器械与食品学院, 上海 200093
Author(s):
WU Shiyao SUI Li YANG Lan LIU Liang
School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
关键词:
运动想象脑功能脑机接口康复治疗
Keywords:
Keywords: motor imagery brain function brain-computer interface rehabilitation therapy
分类号:
R318;R49
DOI:
DOI:10.3969/j.issn.1005-202X.2021.11.023
文献标志码:
A
摘要:
运动想象(MI)指脑演练或模仿特定动作但不伴随实际动作执行的心理过程,MI训练时脑内的一些区域得以激活,脑功能改变类似于实际运动执行时,因此,MI具有重塑脑功能的作用。本研究总结MI重塑脑功能的心理神经肌肉理论模式和镜像神经元理论模式、自主MI和基于脑机接口的MI实现方式以及MI重塑脑功能的定性评估和定量评估;进一步归纳近年来MI重塑脑功能在健康人群和患者康复治疗中的研究进展,并提出MI的类别;最后就MI重塑脑功能的未来发展趋势和研究方向进行展望。
Abstract:
Abstract: Motor imagery (MI) is the psychological processes in which the brain exercises or imitates a specific motion, but it is not accompanied by the actual motor execution. During MI training, some brain areas can be activated, and the changes in brain functions are similar to those occurred at the actual motor execution. Therefore, MI has the role of remodeling brain functions. Herein the psychoneuromuscular theoretical model and mirror neuron theoretical model of MI for remodeling brain functions, the implementations of autonomous MI and MI based on brain-computer interface, and the qualitative and quantitative evaluation methods of MI for remodeling brain functions are summarized. Furthermore, the recent research advances in MI for remodeling brain functions in healthy people and the rehabilitation therapy for patients are reviewed, and the categories of MI are put forward. Finally, the future development trend and research direction of MI for remodeling brain functions are discussed.

相似文献/References:

[1]苌文清,孙曜. 基于多变量格兰杰因果关系的运动想象因效网络构建[J].中国医学物理学杂志,2018,35(12):1457.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.017]
 CHANG Wenqing,SUN Yao. Construction of motion imagination causal network based on multivariable Granger causality[J].Chinese Journal of Medical Physics,2018,35(11):1457.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.017]
[2]周杰,杨国雨,徐涛. 基于空间频率与时间序列信息的多类运动想象脑电分类[J].中国医学物理学杂志,2019,36(1):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
 ZHOU Jie,YANG Guoyu,XU Tao. Classification of multi-class motor imagery EEG data based on spatial frequency and time-series information[J].Chinese Journal of Medical Physics,2019,36(11):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
[3]姜月,邹任玲. 基于多特征融合的运动想象脑电信号识别研究[J].中国医学物理学杂志,2019,36(5):590.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.019]
 JIANG Yue,ZOU Renling. Recognition of motor imagery EEG signals based on multi-feature fusion[J].Chinese Journal of Medical Physics,2019,36(11):590.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.019]
[4]贾婷婷,董朝轶,马爽,等.基于互信息特征提取的运动想象脑机接口[J].中国医学物理学杂志,2022,39(1):63.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.011]
 JIA Tingting,DONG Chaoyi,et al.Brain-computer interface of motion imagery based on mutual information-based feature extraction[J].Chinese Journal of Medical Physics,2022,39(11):63.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.011]
[5]李红利,丁满,张荣华,等.基于特征融合神经网络的运动想象脑电分类算法[J].中国医学物理学杂志,2022,39(1):69.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.012]
 LI?ongli,ING Man,HANG?onghua,et al.Motor imagery EEG classification algorithm based on feature fusion neural network[J].Chinese Journal of Medical Physics,2022,39(11):69.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.012]
[6]袁文欢,罗琳,喻大华,等.脑微损伤的影像学进展[J].中国医学物理学杂志,2022,39(9):1101.[doi:DOI:10.3969/j.issn.1005-202X.2022.09.008]
 YUAN Wenhuan,LUO Lin,YU Dahua,et al.Advances in imaging of mild traumatic brain injury[J].Chinese Journal of Medical Physics,2022,39(11):1101.[doi:DOI:10.3969/j.issn.1005-202X.2022.09.008]
[7]戴亮宙,王娆芬,王海玲.基于特征融合AEBGNet的运动想象脑电分类算法[J].中国医学物理学杂志,2024,41(8):1021.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.016]
 DAI Liangzhou,WANG Raofen,WANG Hailing.Motor imagery EEG classification algorithm using feature fusion based AEBGNet[J].Chinese Journal of Medical Physics,2024,41(11):1021.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.016]

备注/Memo

备注/Memo:
【收稿日期】2021-07-07 【基金项目】国家自然科学基金(11179015, 51173108);上海理工大学科技发展项目(2019KJFZ239, 2020KJFZ232) 【作者简介】吴拾瑶,硕士研究生,研究方向:生物医学工程,E-mail: wushiyao0629@163.com 【通信作者】随力,博士,E-mail: lsui@usst.edu.cn
更新日期/Last Update: 2021-11-27