[1]谷静,马瑞齐,朱恒安.基于卷积神经网络的X图像骨龄评估方法[J].中国医学物理学杂志,2022,39(3):305-310.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.008]
 GU Jing,MA Ruiqi,ZHU Hengan.Convolutional neural network-based method for bone age assessment in X-ray image[J].Chinese Journal of Medical Physics,2022,39(3):305-310.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.008]
点击复制

基于卷积神经网络的X图像骨龄评估方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第3期
页码:
305-310
栏目:
医学影像物理
出版日期:
2022-03-28

文章信息/Info

Title:
Convolutional neural network-based method for bone age assessment in X-ray image
文章编号:
1005-202X(2022)03-0305-06
作者:
谷静马瑞齐朱恒安
西安邮电大学电子工程学院, 陕西 西安 710121
Author(s):
GU Jing MA Ruiqi ZHU Hengan
School of Electronic Engineering, Xian University of Posts and Telecommunications, Xian 710121, China
关键词:
骨龄评估卷积神经网络精减评估区域等级计分法TW3-C
Keywords:
Keywords: bone age assessment convolutional neural network refining the assessment area grade scoring method TW3-C
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.03.008
文献标志码:
A
摘要:
针对传统方法中骨骺评估区域多、评估结果对医生的依赖性强、评估准确率低等问题,在TW3-C法基础上提出一种改进的骨龄评估方法。根据中国儿童骨骼发育特点,利用卷积神经网络对评估区域进行精减和分类,将传统的13个骨骼评估区域精减至10个,并改进等级计分法。试验结果显示,在1岁误差范围内,该方法将骨龄的预测值准确率提升至男性94.42%、女性93.64%,平均绝对误差为男性0.414 3岁、女性0.428 6岁,与典型的骨龄评估方法相比,准确率得到显著提高。
Abstract:
Abstract: To solve the problems in traditional methods such as lots of assessment areas in the epiphysis, high dependence of assessment results on doctors and low assessment accuracy, an improved bone age assessment method based on TW3-C method is proposed. According to the characteristics of Chinese childrens bone development, convolutional neural network is used to refine and classify the assessment areas, reducing the traditional 13 bone assessment areas to 10, and the grade scoring method is also improved. The experimental results show that within the error range of 1-year-old, the proposed method improves the accuracy of the predicted value of bone age to 94.42% for men and 93.64% for women. The average absolute error is 0.414 3 years old for men and 0.428 6 years old for women. Compared with that of typical bone age assessment method, the accuracy of the proposed method for bone age assessment is significantly improved.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(3):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(3):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[3]张俊,朱金汉,庄永东,等. 基于卷积神经网络CT/CBCT影像质量自动分析[J].中国医学物理学杂志,2018,35(5):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
 ZHANG Jun,ZHU Jinhan,ZHUANG Yongdong,et al. Automatic analysis of CT/CBCT image quality based on convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(3):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(3):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]申代友,库洪安,皮红英,等. 基于深度相机的老年跌倒监护系统[J].中国医学物理学杂志,2019,36(2):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
 SHEN Daiyou,KU Hongan,PI Hongying,et al. Depth camera-based fall detection system for the elderly[J].Chinese Journal of Medical Physics,2019,36(3):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(3):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]王自强,刘洪运,石金龙,等.基于卷积神经网络的心电图心博识别[J].中国医学物理学杂志,2019,36(8):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
 WANG Ziqiang,LIU Hongyun,SHI Jinlong,et al.ECG heartbeat recognition based on convolution neural network[J].Chinese Journal of Medical Physics,2019,36(3):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
[8]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(3):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[9]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(3):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[10]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
 JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(3):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]

备注/Memo

备注/Memo:
【收稿日期】2021-07-16 【基金项目】陕西省自然科学基础研究计划资助项目(2020SF-370);西安邮电大学研究生创新基金项目(CXJJLY202029) 【作者简介】谷静,副教授,主要从事通信与信息系统、图像处理研究,E-mail: guj@xupt.edu.cn 【通信作者】马瑞齐,研究生,主要从事深度学习医疗X图像处理研究,E-mail: mrqlove999@163.com
更新日期/Last Update: 2022-03-28