[1]张育,赵轶峰,苏卓彬,等.基于卷积神经网络的胃癌癌前病变图像分类方法[J].中国医学物理学杂志,2022,39(2):209-214.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]
 ZHANG Yu,ZHAO Yifeng,SU Zhuobin,et al.Image classification of gastric precancerous lesions based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(2):209-214.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]
点击复制

基于卷积神经网络的胃癌癌前病变图像分类方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第2期
页码:
209-214
栏目:
医学影像物理
出版日期:
2022-02-26

文章信息/Info

Title:
Image classification of gastric precancerous lesions based on convolutional neural network
文章编号:
1005-202X(2022)02-0209-06
作者:
张育赵轶峰苏卓彬杨永江
河北北方学院附属第一医院胃肠肿瘤外科, 河北 张家口 075000
Author(s):
ZHANG Yu ZHAO Yifeng SU Zhuobin YANG Yongjiang
Department of Gastrointestinal Tumor Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
关键词:
胃癌糜烂息肉溃疡癌前病变卷积神经网络图像分类
Keywords:
Keywords: gastric carcinoma erosion polyp ulcer precancerous lesion convolutional neural network image classification
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2022.02.014
文献标志码:
A
摘要:
通过建立一个以系统和智能方式对胃癌癌前病变进行分类的模型,帮助医生找到敏感点和癌前息肉。在本文方法中,通过设计一种改进的ALexNet架构并使用数据增强、高斯噪声、L2权值衰减和ReLU等技术训练卷积神经网络模型,最后通过利用精度、损失值和混淆矩阵等性能指标对该模型的性能进行评估。在3 677张糜烂、息肉和溃疡等胃病图像上对所提出的模型进行测试,结果表明该模型的分类准确率达到89%。
Abstract:
Abstract: By building a model that can classify gastric precancerous lesions in a systematic and intelligent way, doctors can find sensitive points and precancerous polyps. An improved AlexNet architecture and techniques such as data enhancement, Gaussian noise, L2 weight decay and ReLU are used for training the convolutional neural network model and the performance of the proposed model is evaluated by analyzing its precision, loss value and confusion matrix. The proposed model is tested on 3 677 images of gastric diseases such as erosion, polyps and ulcers, and the results show that the classification accuracy of the proposed model reaches 89%.

相似文献/References:

[1]易伟松,刘文强,陆 东,等.高光谱成像结合化学计量学诊断胃癌组织[J].中国医学物理学杂志,2015,32(01):124.[doi:10.3969/j.issn.1005-202X.2015.01.028]
[2]宋威,赵迪,鹿红,等.胃癌术后调强放疗射野角度优化的剂量学[J].中国医学物理学杂志,2015,32(06):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
 [J].Chinese Journal of Medical Physics,2015,32(2):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
[3]易伟松,钱辉跃,江厚敏.光纤和显微拉曼光谱结合化学计量学鉴别胃癌组织[J].中国医学物理学杂志,2016,33(2):134.[doi:10.3969/j.issn.1005-202X.2016.02.006]
[4]卢晓光,刘细友,郑言宏,等.胃癌术后不同IMRT布野方式对剂量分布的影响[J].中国医学物理学杂志,2016,33(7):664.[doi:10.3969/j.issn.1005-202X.2016.07.004]
[5]刘光波,刘志坤,闫慧娟,等.不同照射技术在全胃癌放疗中的剂量学比较与分析[J].中国医学物理学杂志,2016,33(11):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
 [J].Chinese Journal of Medical Physics,2016,33(2):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
[6]蒋大振,刘晖,戴静,等. 胃癌调强放疗中多叶光栅3种状态的剂量学比较[J].中国医学物理学杂志,2019,36(2):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
 JIANG Dazhen,LIU Hui,DAI Jing,et al. Dosimetric comparison among split-field, fixed-jaw and rotating multi-leaf collimator in the radiotherapy of gastric carcinoma[J].Chinese Journal of Medical Physics,2019,36(2):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
[7]胡志纲,刘勇强,任建,等.胃癌术后不同布野方案对调强放疗剂量分布的影响[J].中国医学物理学杂志,2019,36(12):1400.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.007]
 HU Zhigang,LIU Yongqiang,REN Jian,et al.Effects of different field arrangements on the dose distribution of postoperative intensity-modulated radiotherapy for gastric cancer[J].Chinese Journal of Medical Physics,2019,36(2):1400.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.007]
[8]范显文,何二松,林昌荣,等.胃癌患者身体质量指数对腹腔镜术式选择及效果的影响[J].中国医学物理学杂志,2020,37(4):498.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.018]
 FAN Xianwen,HE Ersong,LIN Changrong,et al.Effects of body mass index on the selection and efficacy of laparoscopic surgery in patients with gastric cancer[J].Chinese Journal of Medical Physics,2020,37(2):498.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.018]
[9]赵呈陆,方志军,高永彬,等.基于改进型V-net卷积神经网络的胃壁分割方法[J].中国医学物理学杂志,2021,38(10):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
 ZHAO Chenglu,FANG Zhijun,GAO Yongbin,et al.Gastric wall segmentation based on improved V-net convolutional neural network[J].Chinese Journal of Medical Physics,2021,38(2):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
[10]周意龙,卫子然,蔡清萍,等.基于卷积神经网络胃癌分割与T分期算法[J].中国医学物理学杂志,2022,39(2):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]
 ZHOU Yilong,WEI Ziran,CAI Qingping,et al.Gastric cancer segmentation and T staging algorithm based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(2):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]

备注/Memo

备注/Memo:
【收稿日期】2021-09-16 【基金项目】河北省卫生厅科研基金(20200502) 【作者简介】张育,硕士,主要研究方向:胃、结直肠恶性肿瘤,E-mail: wine1226130@163.com
更新日期/Last Update: 2022-03-07