相似文献/References:
[1]张 健,岳海振,张艺宝,等.CT与CBCT图像配准范围选择的对比研究[J].中国医学物理学杂志,2015,32(01):21.[doi:10.3969/j.issn.1005-202X.2015.01.006]
[2]王远军,周密,查珊珊,等.多模态医学图像配准技术研究[J].中国医学物理学杂志,2013,30(03):4125.[doi:10.3969/j.issn.1005-202X.2013.03.010]
[3]苌文清,孙曜. 基于多变量格兰杰因果关系的运动想象因效网络构建[J].中国医学物理学杂志,2018,35(12):1457.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.017]
CHANG Wenqing,SUN Yao. Construction of motion imagination causal network based on multivariable Granger causality[J].Chinese Journal of Medical Physics,2018,35(1):1457.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.017]
[4]周杰,杨国雨,徐涛. 基于空间频率与时间序列信息的多类运动想象脑电分类[J].中国医学物理学杂志,2019,36(1):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
ZHOU Jie,YANG Guoyu,XU Tao. Classification of multi-class motor imagery EEG data based on spatial frequency and time-series information[J].Chinese Journal of Medical Physics,2019,36(1):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
[5]姜月,邹任玲. 基于多特征融合的运动想象脑电信号识别研究[J].中国医学物理学杂志,2019,36(5):590.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.019]
JIANG Yue,ZOU Renling. Recognition of motor imagery EEG signals based on multi-feature fusion[J].Chinese Journal of Medical Physics,2019,36(1):590.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.019]
[6]吴茜,皮一飞,周解平.CT/MRI混合配准方法及其在放疗计划系统中的应用[J].中国医学物理学杂志,2020,37(9):1148.[doi:10.3969/j.issn.1005-202X.2020.09.013]
WU Qian,PI Yifei,ZHOU Jieping.CT/MRI hybrid registration and its application in treatment planning system[J].Chinese Journal of Medical Physics,2020,37(1):1148.[doi:10.3969/j.issn.1005-202X.2020.09.013]
[7]吴拾瑶,随力,杨兰,等.运动想象重塑脑功能的研究进展[J].中国医学物理学杂志,2021,38(11):1449.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.023]
WU Shiyao,SUI Li,YANG Lan,et al.Research advances in motor imagery for remodeling brain functions[J].Chinese Journal of Medical Physics,2021,38(1):1449.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.023]
[8]李红利,丁满,张荣华,等.基于特征融合神经网络的运动想象脑电分类算法[J].中国医学物理学杂志,2022,39(1):69.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.012]
LI?ongli,ING Man,HANG?onghua,et al.Motor imagery EEG classification algorithm based on feature fusion neural network[J].Chinese Journal of Medical Physics,2022,39(1):69.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.012]
[9]申思源,罗冬梅.糖尿病视网膜病变的风险揭示与关键因素分析[J].中国医学物理学杂志,2022,39(6):783.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.021]
SHEN Siyuan,LUO Dongmei.Risk disclosure and key factors analysis of diabetic retinopathy[J].Chinese Journal of Medical Physics,2022,39(1):783.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.021]
[10]戴亮宙,王娆芬,王海玲.基于特征融合AEBGNet的运动想象脑电分类算法[J].中国医学物理学杂志,2024,41(8):1021.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.016]
DAI Liangzhou,WANG Raofen,WANG Hailing.Motor imagery EEG classification algorithm using feature fusion based AEBGNet[J].Chinese Journal of Medical Physics,2024,41(1):1021.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.016]