相似文献/References:
[1]郭家梁,等.基于振幅-周期二维分布的脑电复杂度分析[J].中国医学物理学杂志,2016,33(6):633.[doi:10.3969/j.issn.1005-202X.2016.06.019]
[2]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[J].Chinese Journal of Medical Physics,2017,34(3):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[3]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(3):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[4]周文,王瑜,李长胜,等. LightGBM算法在阿尔茨海默症结构磁共振成像分类中的应用[J].中国医学物理学杂志,2019,36(4):408.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.008]
ZHOU Wen,WANG Yu,LI Changsheng,et al. Application of LightGBM algorithm in classification of patients with Alzheimer’s disease from structural magnetic resonance images[J].Chinese Journal of Medical Physics,2019,36(3):408.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.008]
[5]付常洋,王瑜,肖洪兵,等.基于多尺度功能脑网络融合特征的抑郁症分类算法[J].中国医学物理学杂志,2020,37(4):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
FU Changyang,WANG Yu,XIAO Hongbing,et al.Classification of depression using fusion features based on multi-scale functional brain network[J].Chinese Journal of Medical Physics,2020,37(3):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
[6]王静,孔令茵,雷炳业,等.抑郁症的脑复杂网络研究进展[J].中国医学物理学杂志,2020,37(6):780.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.023]
WANG Jing,KONG Lingyin,LEI Bingye,et al.Advances in research on complex brain networks in depression[J].Chinese Journal of Medical Physics,2020,37(3):780.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.023]
[7]谢东东,程永欣,田时雨,等.原发性失眠患者大脑结构磁共振成像研究[J].中国医学物理学杂志,2020,37(11):1380.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.007]
XIE Dongdong,CHENG Yongxin,TIAN Shiyu,et al.Structural magnetic resonance imaging of primary insomnia patients brian regions[J].Chinese Journal of Medical Physics,2020,37(3):1380.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.007]
[8]吴华旺,佘生林,郑伟,等.基于脑网络组图谱的首发-未服药抑郁症白质结构网络研究[J].中国医学物理学杂志,2021,38(7):909.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.023]
WU Huawang,SHE Shenglin,et al.Brainnetome atlas-based investigation of white matter structural networks in drug-na?e first-episode major depressive disorder[J].Chinese Journal of Medical Physics,2021,38(3):909.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.023]
[9]刁云恒,王慧颖,董娇,等.机器学习在抑郁症辅助诊断中的应用进展[J].中国医学物理学杂志,2022,39(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.021]
DIAO Yunheng,WANG Huiying,et al.Advances in the application of machine learning in auxiliary diagnosis of depression[J].Chinese Journal of Medical Physics,2022,39(3):257.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.021]
[10]郭朝晖,王瑜,马慧鋆,等.基于迁移学习和3D-WGMobileNet的青年抑郁症辅助诊断[J].中国医学物理学杂志,2024,41(4):455.[doi:DOI:10.3969/j.issn.1005-202X.2024.04.010]
GUO Zhaohui,WANG Yu,MA Huijun,et al.Diagnosis of youth depression based on transfer learning and 3D-WGMobileNet[J].Chinese Journal of Medical Physics,2024,41(3):455.[doi:DOI:10.3969/j.issn.1005-202X.2024.04.010]
[11]计亚荣,王瑜,付常洋,等.基于典型相关分析与双模态数据融合的抑郁症辅助诊断[J].中国医学物理学杂志,2021,38(10):1316.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.024]
JI Yarong,WANG Yu,FU Changyang,et al.Aided diagnosis of major depressive disorder based on canonical correlation analysis and bimodal data fusion[J].Chinese Journal of Medical Physics,2021,38(3):1316.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.024]