[1]廖丽丽,张东.基于卷积神经网络的超声图像散斑去噪算法[J].中国医学物理学杂志,2022,39(1):32-37.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.006]
 LIAO Lili,ZHANG Dong.Convolutional neural network-based de-speckling algorithm for ultrasound images[J].Chinese Journal of Medical Physics,2022,39(1):32-37.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.006]
点击复制

基于卷积神经网络的超声图像散斑去噪算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第1期
页码:
32-37
栏目:
医学影像物理
出版日期:
2022-01-17

文章信息/Info

Title:
Convolutional neural network-based de-speckling algorithm for ultrasound images
文章编号:
1005-202X(2022)01-0032-06
作者:
廖丽丽张东
武汉大学物理科学与技术学院, 湖北 武汉 430072
Author(s):
LIAO Lili ZHANG Dong
School of Physics and Technology, Wuhan University, Wuhan 430072, China
关键词:
散斑噪声卷积神经网络纹理信息模拟超声成像技术
Keywords:
Keywords: speckle noise convolutional neural network texture information simulated ultrasound imaging technology
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2022.01.006
文献标志码:
A
摘要:
为了提高超声图像质量,解决传统去噪算法在抑制散斑噪声和保留超声图像纹理特征方面的难题,提出一种基于卷积神经网络的超声图像散斑去噪算法DSCNN(De-speckling CNN)。本文提出的算法利用卷积神经网络强大的拟合能力来学习从超声图像到其相应的高质量图像的复杂映射,同时,通过改进损失函数的方式来减少去噪过程中纹理信息的损失和细节的模糊。不同于以往简单地假设超声散斑噪声为乘性噪声,本文利用基于超声图像采集模型和散斑噪声形成模型的模拟超声成像技术为去噪模型生成更贴合真实超声图像的训练数据,解决深度学习方法训练数据匮乏以及在临床上无法获得与超声图像空间配准作为标签的无噪声图像的难题。通过与其他具有代表性的超声图像去噪算法比较,经DSCNN去噪后的超声图像无论在视觉效果还是图像质量评价指标上都取得了更好的结果,其中SSIM达到0.856 9,在文中所有方法中最高。
Abstract:
Abstract: In order to improve the quality of ultrasound images and solve the problems of how to maintain the balance between suppressing speckle noise and retaining the texture features in ultrasound images, a de-speckling algorithm based on convolutional neural network (DSCNN) is proposed. The proposed algorithm utilizes the powerful fitting ability of CNN to learn the complex mapping from the ultrasound image to its corresponding high-quality image. Meanwhile, it reduces the loss of texture information and the blurred details during denoising by advanced loss function. Different from previous assumption that the speckle noise is a kind of multiplicative noise, the simulated ultrasound imaging technology based on the ultrasound image acquisition model and the speckle noise formation model is used to generate more realistic ultrasound images which are taken as the training data for denoising model, thus solving the problems of lack of training data and overcoming difficulties in obtaining a noise-free image which is used as a label in spatial registration with the ultrasound image. Compared with the images denoised by other typical denoising algorithms, the ultrasound image denoised by DSCNN wins higher scores both in visual effect and image quality assessment, and SSIM even reaches 0.856 9, which is highest among all methods discussed in the study.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(1):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[3]张俊,朱金汉,庄永东,等. 基于卷积神经网络CT/CBCT影像质量自动分析[J].中国医学物理学杂志,2018,35(5):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
 ZHANG Jun,ZHU Jinhan,ZHUANG Yongdong,et al. Automatic analysis of CT/CBCT image quality based on convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(1):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(1):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]申代友,库洪安,皮红英,等. 基于深度相机的老年跌倒监护系统[J].中国医学物理学杂志,2019,36(2):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
 SHEN Daiyou,KU Hongan,PI Hongying,et al. Depth camera-based fall detection system for the elderly[J].Chinese Journal of Medical Physics,2019,36(1):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(1):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]王自强,刘洪运,石金龙,等.基于卷积神经网络的心电图心博识别[J].中国医学物理学杂志,2019,36(8):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
 WANG Ziqiang,LIU Hongyun,SHI Jinlong,et al.ECG heartbeat recognition based on convolution neural network[J].Chinese Journal of Medical Physics,2019,36(1):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
[8]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(1):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[9]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(1):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[10]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
 JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]

备注/Memo

备注/Memo:
【收稿日期】2021-06-13 【基金项目】国家重点研发计划973项目(2011CB707900) 【作者简介】廖丽丽,硕士,研究方向:医学图像处理,E-mail: leowhat1@163.com
更新日期/Last Update: 2022-01-17