[1]束炅,王宏志,崔相利.两种自动勾画软件对危及器官勾画结果对比分析[J].中国医学物理学杂志,2022,39(3):295-299.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.006]
 SHU Jiong,,et al.Comparison of AccuContour and DeepViewer in auto-segmentation of organs-at-risk[J].Chinese Journal of Medical Physics,2022,39(3):295-299.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.006]
点击复制

两种自动勾画软件对危及器官勾画结果对比分析()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第3期
页码:
295-299
栏目:
医学放射物理
出版日期:
2022-03-28

文章信息/Info

Title:
Comparison of AccuContour and DeepViewer in auto-segmentation of organs-at-risk
文章编号:
1005-202X(2022)03-0295-05
作者:
束炅123王宏志123崔相利13
1.中国科学院合肥物质科学研究院健康与医学技术研究所, 安徽 合肥 230031; 2.中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026; 3.中国科学院合肥肿瘤医院放疗中心, 安徽 合肥 230031
Author(s):
SHU Jiong1 2 3 WANG Hongzhi1 2 3 CUI Xiangli1 3
1. Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 2. Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China 3. Radiotherapy Center, Hefei Cancer Hospital, Chinese Academy of Science, Hefei 230031, China
关键词:
危及器官自动勾画AccuContourDeepViewer
Keywords:
Keywords: organs-at-risk auto-segmentation AccuContour DeepViewer
分类号:
R318;R811
DOI:
DOI:10.3969/j.issn.1005-202X.2022.03.006
文献标志码:
A
摘要:
目的:比较和分析两种自动勾画软件(AccuContour和DeepViewer)勾画危及器官的精确度,以此评估它们在不同肿瘤放射治疗中的适用程度和优越性。方法:回顾性选取中科院合肥肿瘤医院肿瘤患者60例,其中鼻咽癌、肺癌、乳腺癌、宫颈癌各15例,由同一个物理师在患者CT图像上手动勾画危及器官,再分别用两种自动勾画软件进行勾画。以手动勾画结果为标准,分别计算两种软件勾画结果的戴斯相似性系数(DSC)和绝对体积差(ΔV),并对两种勾画结果的差异进行配对t检验,比较两种软件勾画结果。结果:AccuContour软件和DeepViewer软件勾画结果的总体DSC分别为0.90±0.11和0.87±0.14(t=-5.029, P<0.05),总体ΔV分别为(13.23±18.77)和(29.89±45.27) cm3(t=7.344, P<0.05)。在20个危及器官中,AccuContour软件勾画结果的所有DSC均大于0.7,其中最大DSC为脑(0.99±0.00),最小DSC为右眼晶状体(0.71±0.11);DeepViewer软件勾画的结果有18个器官DSC大于等于0.7,其中,最大DSC为肺(0.98±0.00),最小DSC为右侧股骨头(0.63±0.18)。AccuContour软件勾画的13个器官的ΔV均小于DeepViewer勾画结果。结论:两种软件整体勾画效果均比较好,对于体积较大的危及器官,勾画效果要优于体积较小的器官,AccuContour软件勾画效果优于DeepViewer软件。
Abstract:
Abstract: Objective To compare and analyze the accuracies of two kinds of software (AccuContour and DeepViewer) in the auto-segmentation of organs-at-risk, thereby evaluating their applicability and superiority in the radiotherapy for different tumors. Methods A total of 60 patients with different cancer were selected from Hefei Cancer Hospital, Chinese Academy of Sciences, including nasopharyngeal cancer, lung cancer, breast cancer, and cervical cancer, each of 15 cases. The organs-at-risk in CT images were auto-segmented by a physicist using AccuContour software and DeepViewer software. Taking manual segmentation as the standard, the Dice similarity coefficient (DSC) and absolute volume difference (ΔV) were calculated and paired t test was also carried out for analyzing the differences in segmentation results obtained by different software. Results The overall DSC of the segmentation results obtained by Accucontour software and DeepViewer software were 0.90±0.11 and 0.87±0.14 (t=-5.029, P<0.05), and the overall ΔV were (13.23±18.77) and (29.89±45.27) cm3 (t=7.344, P<0.05). All the DSC of 20 organs-at-risk segmented by AccuContour was greater than 0.7, of which brain had the maximum DSC (0.99±0.00), and the right lens had the minimum DSC (0.71±0.11). The segmentation results obtained by DeepViewer showed that 18 out of 20 organs-at-risk had a DSC greater than or equal to 0.7, and that the maximum (0.98±0.00) and minimum (0.63±0.18) DSC was found in the lungs and the right femoris, respectively. The ΔV of the 13 organs segmented by AccuContour were all less than those segmented by DeepViewer. Conclusion Both two kinds of software achieve satisfactory segmentation results, and have preferable performance in the segmentation of larger organs rather than smaller organs. Moreover, AccuContour is superior to DeepViewer in segmentation performance.

相似文献/References:

[1]蒋晓芹,段宝风,艾平,等.基于图谱库的自动轮廓勾画软件(ABAS)在鼻咽癌调强放疗中的应用[J].中国医学物理学杂志,2013,30(02):3997.[doi:10.3969/j.issn.1005-202X.2013.02.008]
[2]倪千喜,唐迪红,张九堂,等.妇科肿瘤后装逆向调强放射治疗的剂量学和疗效研究[J].中国医学物理学杂志,2013,30(06):4487.[doi:10.3969/j.issn.1005-202X.2013.06.005]
[3]叶柳清,洪文松,黎静,等.不同图像灰度-密度校准曲线对螺旋断层放疗系统剂量计算的影响[J].中国医学物理学杂志,2016,33(5):505.[doi:10.3969/j.issn.1005-202X.2016.05.015]
 [J].Chinese Journal of Medical Physics,2016,33(3):505.[doi:10.3969/j.issn.1005-202X.2016.05.015]
[4]吴昊,蒋璠,岳海振,等.瓦里安RapidPlan模型训练中统计离群值的处理及其剂量学影响[J].中国医学物理学杂志,2016,33(7):649.[doi:10.3969/j.issn.1005-202X.2016.07.001]
 [J].Chinese Journal of Medical Physics,2016,33(3):649.[doi:10.3969/j.issn.1005-202X.2016.07.001]
[5]王贝,全红,邱杰,等. 容积旋转调强技术用于直肠癌时最佳机架角度设置研究[J].中国医学物理学杂志,2016,33(9):898.[doi:10.3969/j.issn.1005-202X.2016.09.006]
 [J].Chinese Journal of Medical Physics,2016,33(3):898.[doi:10.3969/j.issn.1005-202X.2016.09.006]
[6]曹洋森,于春山,孙永健,等.Monaco两种优化模式在前列腺癌容积旋转调强中的剂量学比较[J].中国医学物理学杂志,2016,33(11):1126.[doi:10.3969/j.issn.1005-202X.2016.11.009]
 [J].Chinese Journal of Medical Physics,2016,33(3):1126.[doi:10.3969/j.issn.1005-202X.2016.11.009]
[7]戴相昆,曲宝林,杜乐辉,等.断层径照技术在非小细胞肺癌放疗中的应用[J].中国医学物理学杂志,2017,34(2):126.[doi:10.3969/j.issn.1005-202X.2017.02.004]
 Application of Tomo Direct in the radiotherapy of non-small cell lung cancer[J].Chinese Journal of Medical Physics,2017,34(3):126.[doi:10.3969/j.issn.1005-202X.2017.02.004]
[8]张富利,许卫东,蒋华勇,等.不同类型多叶准直器对左侧乳腺癌保乳术后容积旋转调强放疗技术剂量分布的影响[J].中国医学物理学杂志,2017,34(7):726.[doi:10.3969/j.issn.1005-202X.2017.07.015]
 [J].Chinese Journal of Medical Physics,2017,34(3):726.[doi:10.3969/j.issn.1005-202X.2017.07.015]
[9]薛涛,刘光波,袁香坤,等. 宫颈癌近距离腔内放射治疗中膀胱和直肠ICRU参考点剂量和体积剂量受量比较[J].中国医学物理学杂志,2017,34(9):897.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.008]
 [J].Chinese Journal of Medical Physics,2017,34(3):897.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.008]
[10]马长升,黄付静,马长东,等. 评估靶区与危及器官重叠体积对宫颈癌经验引导调强计划自动优化的影响[J].中国医学物理学杂志,2017,34(12):1206.[doi:DOI:10.3969/j.issn.1005-202X.2017.12.004]
 MA Changsheng,HUANG Fujing,MA Changdong,et al. Effect of the overlapping volume of target area and organs-at-risk on the automatic optimization of knowledge-based intensity-modulated radiotherapy plan for cervical cancer[J].Chinese Journal of Medical Physics,2017,34(3):1206.[doi:DOI:10.3969/j.issn.1005-202X.2017.12.004]
[11]张艺宝,吴昊,李莎,等.临床前验证与几何对比分析基于图谱库的危及器官自动勾画[J].中国医学物理学杂志,2015,32(06):761.[doi:doi:10.3969/j.issn.1005-202X.2015.06.001]
 [J].Chinese Journal of Medical Physics,2015,32(3):761.[doi:doi:10.3969/j.issn.1005-202X.2015.06.001]
[12]王金媛,徐寿平,杨微,等.算法和匹配数目对宫颈癌危及器官自动勾画的影响[J].中国医学物理学杂志,2019,36(11):1243.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.001]
 WANG Jinyuan,XU Shouping,YANG Wei,et al.Effects of algorithm and matching number on the auto-segmentation of organs-at-risk in patients with cervical cancer[J].Chinese Journal of Medical Physics,2019,36(3):1243.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.001]
[13]王沛沛,李金凯,李彩虹,等.基于人工智能技术的危及器官自动勾画在胸部肿瘤中的应用[J].中国医学物理学杂志,2019,36(11):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
 WANG Peipei,LI Jinkai,LI Caihong,et al.Application of automatic organs-at-risk segmentation based on artificial intelligence technology in thoracic tumors[J].Chinese Journal of Medical Physics,2019,36(3):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
[14]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(3):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[15]汪志,常艳奎,吴昊天,等.基于深度学习的危及器官自动勾画软件系统DeepViewer在放疗中的应用及评估[J].中国医学物理学杂志,2020,37(8):1071.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.025]
 WANG Zhi,CHANG Yankui,et al.Application and evaluation of deep learning-based DeepViewer system for automatic segmentation of organs-at-risk[J].Chinese Journal of Medical Physics,2020,37(3):1071.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.025]
[16]宋威,鹿红,马珺,等.金属伪影对鼻咽癌放疗危及器官自动勾画的影响[J].中国医学物理学杂志,2021,38(10):1185.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.001]
 SONG Wei,LU Hong,MA Jun,et al.Effects of metal artifacts on automatic segmentation of organs-at-risk in patients receiving radiotherapy for nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2021,38(3):1185.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.001]
[17]薛涛,吴迪,卢晓岩,等.RT-Mind自动勾画技术应用于鼻咽癌放射治疗可行性研究[J].中国医学物理学杂志,2022,39(6):661.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.001]
 XUE Tao,WU Di,LU Xiaoyan,et al.Feasibility of RT-Mind auto-segmentation technique in radiotherapy for nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2022,39(3):661.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.001]
[18]侯东梅,赵永瑞,殷旭君,等.两种自动勾画系统勾画头部小体积危及器官的对比[J].中国医学物理学杂志,2022,39(6):676.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.004]
 HOU Dongmei,ZHAO Yongrui,YIN Xujun,et al.Comparison of two different systems for automatic segmentation of small-sized organs-at-risk in the head[J].Chinese Journal of Medical Physics,2022,39(3):676.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.004]
[19]吴传锋,金鑫妍,白司悦,等.基于U-Net结合改进算法对放疗危及器官自动勾画研究[J].中国医学物理学杂志,2023,40(3):303.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.008]
 WU Chuanfeng,JIN Xinyan,BAI Siyue,et al.Auto-segmentation of organs-at-risk for radiotherapy using U-Net combined with improved algorithms[J].Chinese Journal of Medical Physics,2023,40(3):303.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.008]

备注/Memo

备注/Memo:
【收稿日期】2021-10-14 【基金项目】安徽省重点研究与开发计划项目(202004j07020052);国家重点研发计划(2018YFE0114100) 【作者简介】束炅,博士研究生,研究方向:肿瘤放射治疗,Email: shujiong@mail.ustc.edu.cn 【通信作者】王宏志,硕士,研究员,研究方向:高端物理技术向医学应用转化的相关研究,Email: wanghz@hfcas.ac.cn;崔相利,博士,放疗物理师,研究方向:肿瘤放射治疗,Email: xlcui@cmpt.ac.cn
更新日期/Last Update: 2022-03-28