[1]吴华旺,佘生林,郑伟,等.基于脑网络组图谱的首发-未服药抑郁症白质结构网络研究[J].中国医学物理学杂志,2021,38(7):909-914.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.023]
 WU Huawang,SHE Shenglin,et al.Brainnetome atlas-based investigation of white matter structural networks in drug-na?e first-episode major depressive disorder[J].Chinese Journal of Medical Physics,2021,38(7):909-914.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.023]
点击复制

基于脑网络组图谱的首发-未服药抑郁症白质结构网络研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第7期
页码:
909-914
栏目:
脑科学与神经物理
出版日期:
2021-07-26

文章信息/Info

Title:
Brainnetome atlas-based investigation of white matter structural networks in drug-na?e first-episode major depressive disorder
文章编号:
1005-202X(2021)07-0909-06
作者:
吴华旺13佘生林2郑伟2吴逢春23
1.广州医科大学附属脑科医院影像科, 广东 广州 510370; 2.广州医科大学附属脑科医院精神科, 广东 广州 510370; 3.广东省精神疾病转化医学工程技术研究中心, 广东 广州 510370
Author(s):
WU Huawang1 3 SHE Shenglin2 ZHENG Wei2 WU Fengchun2 3
1. Department of Imaging, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China 2. Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China 3. Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
关键词:
抑郁症扩散张量成像脑网络组图谱脑网络
Keywords:
major depressive disorder diffusion tensor imaging brainnetome atlas brain network
分类号:
R318;R749.4
DOI:
DOI:10.3969/j.issn.1005-202X.2021.07.023
文献标志码:
A
摘要:
使用图论的分析方法对首发-未服药抑郁症(MDD)的扩散磁共振数据进行分析,探讨其白质结构网络变化。结果显示相较于健康对照组,MDD患者的网络节点拓扑属性受到了破坏,主要位于双侧海马旁回、双侧基底节、双侧顶下小叶、左侧中央后回、左侧中央旁小叶、右侧颞中回、右侧顶上小叶、右侧岛叶、右侧枕叶皮层腹中部、右侧扣带回以及右侧丘脑。进一步的相关分析结果表明,MDD患者的右侧顶上小叶、右侧岛叶的节点介数与病程呈正相关,右侧丘脑、左侧海马旁回的节点介数,左侧海马旁回、右侧顶下小叶的节点度与汉密尔顿的抑郁得分呈显著正相关。
Abstract:
Graph theory is adopted to analyze the diffusion tensor imaging data of drug-na?e first-episode major depressive disorder (MDD), aiming to explore the changes of white matter structural networks in MDD patients. Compared with those in healthy controls, the topological properties of brain networks in MDD patients are damaged, and the changes are mainly found in bilateral parahippocampal gyrus, bilateral basal ganglia, bilateral inferior parietal lobule, the left postcentral gyrus, the left paracentral lobule, the right middle temporal gyrus, the right superior parietal lobule, the right insular lobe, the right medio ventral occipital cortex, the right cingulate gyrus and the right thalamus. Moreover, a correlation analysis shows that the node betweenness of the right superior parietal lobule and the right insular lobe in MDD patients are positively correlated with the course of disease, and that the node betweenness of the right thalamus and the left parahippocampus as well as the nodal degrees of the left parahippocampus and the right inferior parietal lobule in MDD patients are positively correlated with the score of Hamilton rating scale for depression.

相似文献/References:

[1]郭家梁,等.基于振幅-周期二维分布的脑电复杂度分析[J].中国医学物理学杂志,2016,33(6):633.[doi:10.3969/j.issn.1005-202X.2016.06.019]
[2]秦耿耿,代月黎,陈卫国,等.基于纤维束的空间统计方式的复发缓解型多发性硬化患者磁共振扩散张量成像与正常人对照[J].中国医学物理学杂志,2016,33(8):799.[doi:10.3969/j.issn.1005-202X.2016.08.009]
 [J].Chinese Journal of Medical Physics,2016,33(7):799.[doi:10.3969/j.issn.1005-202X.2016.08.009]
[3]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(7):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[4]林恒山,林增如,李燕燕,等.磁共振扩散张量成像序列对脊髓型颈椎病的诊断价值[J].中国医学物理学杂志,2019,36(11):1291.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.009]
 LIN Hengshan,LIN Zengru,et al.Diagnostic value of diffusion tensor magnetic resonance imaging sequence in cervical spondylotic myelopathy[J].Chinese Journal of Medical Physics,2019,36(7):1291.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.009]
[5]付常洋,王瑜,肖洪兵,等.基于多尺度功能脑网络融合特征的抑郁症分类算法[J].中国医学物理学杂志,2020,37(4):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
 FU Changyang,WANG Yu,XIAO Hongbing,et al.Classification of depression using fusion features based on multi-scale functional brain network[J].Chinese Journal of Medical Physics,2020,37(7):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
[6]王静,孔令茵,雷炳业,等.抑郁症的脑复杂网络研究进展[J].中国医学物理学杂志,2020,37(6):780.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.023]
 WANG Jing,KONG Lingyin,LEI Bingye,et al.Advances in research on complex brain networks in depression[J].Chinese Journal of Medical Physics,2020,37(7):780.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.023]
[7]刘良友,李兆同,张泽茹,等.基于参考图像的压缩感知磁共振扩散张量成像[J].中国医学物理学杂志,2021,38(3):323.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.010]
 LIU Liangyou,LI Zhaotong,ZHANG Zeru,et al.Compressed sensing diffusion tensor imaging based on reference image[J].Chinese Journal of Medical Physics,2021,38(7):323.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.010]
[8]计亚荣,王瑜,付常洋,等.基于典型相关分析与双模态数据融合的抑郁症辅助诊断[J].中国医学物理学杂志,2021,38(10):1316.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.024]
 JI Yarong,WANG Yu,FU Changyang,et al.Aided diagnosis of major depressive disorder based on canonical correlation analysis and bimodal data fusion[J].Chinese Journal of Medical Physics,2021,38(7):1316.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.024]
[9]刁云恒,王慧颖,董娇,等.机器学习在抑郁症辅助诊断中的应用进展[J].中国医学物理学杂志,2022,39(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.021]
 DIAO Yunheng,WANG Huiying,et al.Advances in the application of machine learning in auxiliary diagnosis of depression[J].Chinese Journal of Medical Physics,2022,39(7):257.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.021]
[10]段逸凡,王瑜,付常洋,等.基于双模态磁共振成像和决策层融合的抑郁症辅助诊断[J].中国医学物理学杂志,2022,39(3):378.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.019]
 DUAN Yifan,WANG Yu,FU Changyang,et al.Auxiliary diagnosis of depression based on bimodal magnetic resonance imaging and decision level fusion[J].Chinese Journal of Medical Physics,2022,39(7):378.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.019]

备注/Memo

备注/Memo:
【收稿日期】2021-02-05 【基金项目】广州市科技计划-对外合作交流(201807010064) 【作者简介】吴华旺,博士,主治医师,研究方向:磁共振影像学数据处理,E-mail: huawangwu@gzhmu.edu.cn 【通信作者】吴逢春,博士,主任医师,研究方向:精神疾病的磁共振影像学研究,E-mail: gzwu_feng@126.com
更新日期/Last Update: 2021-07-26