[1]侯伟,赵耕,刘玉良,等.基于一维卷积神经网络的糖尿病周围神经病变预测模型研究[J].中国医学物理学杂志,2022,39(1):127-132.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.021]
 HOU Wei,ZHAO Geng,LIU Yuliang,et al.Prediction model of diabetic peripheral neuropathy based on one-dimensional convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(1):127-132.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.021]
点击复制

基于一维卷积神经网络的糖尿病周围神经病变预测模型研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第1期
页码:
127-132
栏目:
医学人工智能
出版日期:
2022-01-17

文章信息/Info

Title:
Prediction model of diabetic peripheral neuropathy based on one-dimensional convolutional neural network
文章编号:
1005-202X(2022)01-0127-06
作者:
侯伟1赵耕2刘玉良1杨伟明1郭丽1
1.天津科技大学电子信息与自动化学院, 天津 300222; 2.天津医科大学代谢病医院检验科, 天津 300070
Author(s):
HOU Wei1 ZHAO Geng2 LIU Yuliang1 YANG Weiming1 GUO Li1
1. School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China 2. Department of Laboratory, Metabolic Disease Hospital, Tianjin Medical University, Tianjin 300070, China
关键词:
糖尿病周围神经病变深度学习一维卷积神经网络数据预处理
Keywords:
Keywords: diabetic peripheral neuropathy deep learning one-dimensional convolutional neural network data preprocessing
分类号:
R318;R587.2
DOI:
DOI:10.3969/j.issn.1005-202X.2022.01.021
文献标志码:
A
摘要:
为了实现对糖尿病周围神经病变(DPN)的早期预防,辅助医生进行早期诊断与决策,提出了一种基于一维卷积神经网络的DPN预测模型,对原始数据进行了一系列的预处理工作以提高数据的质量,此外数据集的特征维度较高,为了进一步提高预测模型的准确性,进行了主成分分析(PCA)降维处理,通过自主学习数据的特征信息,从中挖掘其有价值的医学信息与规律,来实现DPN的预测。通过支持向量机、BP神经网络和一维卷积神经网络分别建立了DPN预测模型。实验结果表明,一维卷积神经网络模型预测效果优于其他两个模型,其准确率、召回率、F1值、AUC值分别达到了0.983、0.916、0.923、0.98。
Abstract:
Abstract: In order to achieve the early prevention of diabetic peripheral neuropathy (DPN), and assist doctors in early diagnosis and decision-making, a prediction model of DPN based on one-dimensional convolution neural network is proposed. A series of preprocessing is carried out on the original data to improve the quality of the data. In addition, due to the high feature dimensions of the data set, principal component analysis is used to reduce the dimensions, thereby further improving the accuracy of the prediction model. Through self-learning of the feature information of the data, the useful information such as medical information and laws is mined for achieving the prediction of DPN. The DPN prediction models are established by support vector machine, BP neural network and one-dimensional convolution neural network, separately. The experimental results show that the prediction effect of one-dimensional convolutional neural network model is better than that of the other two models, and its accuracy, recall rate, F1-score and AUC values are 0.983, 0.916, 0.923 and 0.98, respectively.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(1):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(1):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(1):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(1):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(1):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(1):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(1):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(1):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(1):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]

备注/Memo

备注/Memo:
【收稿日期】2021-07-15 【基金项目】天津市科委技术创新引导专项(21YDTPJC00500);教育部“天诚汇智”科研创新基金(2018A03033) 【作者简介】侯伟,硕士,研究方向:人工智能辅助诊断,E-mail: 2206736393@qq.com 【通信作者】刘玉良,副教授,研究方向:基于深度学习的智能医学辅助诊断、医用电子仪器产品开发,E-mail: ylliu@tust.edu.cn
更新日期/Last Update: 2022-01-17