[1]莫春梅,周金治,李雪,等.基于改进U-Net的肝脏分割方法[J].中国医学物理学杂志,2021,38(5):571-577.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.009]
 MO Chunmei,ZHOU Jinzhi,et al.Liver segmentation method based on improved U-Net[J].Chinese Journal of Medical Physics,2021,38(5):571-577.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.009]
点击复制

基于改进U-Net的肝脏分割方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第5期
页码:
571-577
栏目:
医学影像物理
出版日期:
2021-05-01

文章信息/Info

Title:
Liver segmentation method based on improved U-Net
文章编号:
1005-202X(2021)05-0571-07
作者:
莫春梅12周金治12李雪12余玺12
1.西南科技大学信息工程学院, 四川 绵阳 621000; 2.特殊环境机器人技术四川省重点实验室, 四川 绵阳 621000
Author(s):
MO Chunmei1 2 ZHOU Jinzhi1 2 LI Xue1 2 YU Xi1 2
1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621000, China 2. Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Mianyang 621000, China
关键词:
肝脏分割U-Net残差模块跳跃连接混合损失函数
Keywords:
Keywords: liver segmentation U-Net residual block skip connection mixed loss function
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2021.05.009
文献标志码:
A
摘要:
针对现有肝脏图像分割方法存在分割精度较低的问题,提出一种改进U-Net的肝脏分割方法。该方法对U-Net结构做出以下改进,即引入改进的残差模块、重新设计跳跃连接,然后采用混合损失函数,从而提高特征信息的利用率,减少编码器和解码器之间的语义差异,缓解类不平衡的问题并且加快网络收敛。在CodaLab组织提供的公共数据集LITS(Liver Tumor Segmentation)上的实验结果表明,利用该方法达到的Dice相似系数值、敏感度、交并比分别为93.69%、94.87%和87.49%。相比于U-Net和Attention U-Net等分割方法,该方法分割出的肝脏区域结果更加准确,取得了更好的分割性能。
Abstract:
Abstract: In order to solve the problem of low precision in existing methods for liver segmentation, a liver segmentation method based on improved U-Net is proposed. U-Net structure is improved by introducing improved residual block and redesigning skip connection, and then mixed loss function is adopted to enhance the utilization of feature information and reduce the semantic differences between encoder and decoder, thereby alleviating class imbalance problem and speeding up network convergence. The experimental results on Liver Tumor Segmentation (LITS), a common data set provided by CodaLab, showed that the Dice similarity coefficient, sensitivity and intersection over union achieved by the proposed method were 93.69%, 94.87% and 87.49%, respectively. Compared with other segmentation methods, such as U-Net and Attention U-Net, the proposed method can obtain a more accurate result in liver segmentation and has better segmentation performance.

相似文献/References:

[1]陈津津,赵于前,邹润民.基于超限学习机的腹部CT序列图像肝脏自动分割[J].中国医学物理学杂志,2015,32(05):611.[doi:doi:10.3969/j.issn.1005-202X.2015.05.001]
[2]何兰,吴倩. 基于3D卷积神经网络的肝脏自动分割方法[J].中国医学物理学杂志,2018,35(6):680.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.012]
 HE Lan,WU Qian. Automatic liver segmentation based on three-dimensional convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(5):680.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.012]
[3]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(5):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[4]常艳奎,彭昭,周解平,等.基于U-net的心脏自动勾画模型的临床应用及改进[J].中国医学物理学杂志,2020,37(10):1218.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.002]
 CHANG Yankui,PENG Zhao,ZHOU Jieping,et al.Clinical application and improvement of U-net-based model for automatic segmentation of the heart[J].Chinese Journal of Medical Physics,2020,37(5):1218.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.002]
[5]董国亚,宋立明,李雅芬,等.基于深度学习的跨模态医学图像转换[J].中国医学物理学杂志,2020,37(10):1335.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.021]
 DONG Guoya,SONG Liming,et al.Cross-modality medical image synthesis based on deep learning[J].Chinese Journal of Medical Physics,2020,37(5):1335.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.021]
[6]董宇波,王蕊,赵慧娟,等.革兰氏染色细菌显微图像深度学习分类与计数[J].中国医学物理学杂志,2021,38(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.020]
 DONG Yubo,WANG Rui,ZHAO Huijuan,et al.Classification and counting of Gram-stained bacteria by deeply learning in micro-image[J].Chinese Journal of Medical Physics,2021,38(5):127.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.020]
[7]李雪,周金治,莫春梅,等.基于特征融合的U-Net肺自动分割方法[J].中国医学物理学杂志,2021,38(6):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
 LI Xue,ZHOU Jinzhi,et al.U-Net automatic lung segmentation based on feature fusion[J].Chinese Journal of Medical Physics,2021,38(5):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
[8]顾国浩,龙英文,吉明明.U-Net改进及其在新冠肺炎图像分割的应用[J].中国医学物理学杂志,2022,39(8):1041.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.022]
 GU Guohao,LONG Yingwen,JI Mingming.Improved U-Net and its application in COVID-19 image segmentation[J].Chinese Journal of Medical Physics,2022,39(5):1041.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.022]
[9]师文博,杨环,西永明,等.基于自注意力的双通路全脊柱 X 光图像分割模型[J].中国医学物理学杂志,2022,39(11):1385.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.011]
 SHI Wenbo,YANG Huan,XI Yongming,et al.Self-attention based dual pathway network for spine segmentation in X-ray image[J].Chinese Journal of Medical Physics,2022,39(5):1385.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.011]
[10]陈菁菁,李小霞,吕念祖.结合通道权重更新与密集残差金字塔空间注意力的皮肤病变分割方法[J].中国医学物理学杂志,2023,40(1):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]
 CHEN Jingjing,LI Xiaoxia,L?Nianzu,et al.Skin lesion segmentation method combining channel weight update and dense residual pyramid spatial attention[J].Chinese Journal of Medical Physics,2023,40(5):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]

备注/Memo

备注/Memo:
【收稿日期】2021-01-18 【基金项目】国家自然科学基金(11472297);西南科技大学研究生创新基金(20ycx0056) 【作者简介】莫春梅,硕士,研究方向:医学图像处理、机器学习,E-mail: 1466567410@qq.com; 【通信作者】周金治,硕士,副教授,研究方向:智能信息处理、机器学习,E-mail: 7467644@qq.com
更新日期/Last Update: 2021-05-31