[1]贺桢,石蕴玉,刘翔,等.基于卷积神经网络检测颈动脉斑块[J].中国医学物理学杂志,2022,39(1):122-126.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.020]
 HE Zhen,SHI Yunyu,LIU Xiang,et al.Detection of carotid plaques based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(1):122-126.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.020]
点击复制

基于卷积神经网络检测颈动脉斑块()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第1期
页码:
122-126
栏目:
医学人工智能
出版日期:
2022-01-17

文章信息/Info

Title:
Detection of carotid plaques based on convolutional neural network
文章编号:
1005-202X(2022)01-0122-05
作者:
贺桢1石蕴玉1刘翔1杨少玲2牛嘉丰1
1.上海工程技术大学电子电气工程学院, 上海 201620; 2.上海市第八人民医院超声医学科, 上海 200235
Author(s):
HE Zhen1 SHI Yunyu1 LIU Xiang1 YANG Shaoling2 NIU Jiafeng1
1. School of Electronic and Electric Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 2. Department of Ultrasound, Shanghai Eighth Peoples Hospital, Shanghai 200235, China
关键词:
卷积神经网络颈动脉斑块内中膜厚度超声图像
Keywords:
Keywords: convolutional neural network carotid plaque intima-media thickness ultrasound image
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.01.020
文献标志码:
A
摘要:
提出一种基于卷积神经网络的自动检测超声图像颈动脉斑块的方法。通过超分辨生成对抗网络提高超声图像质量,并采用高斯混合模型算法结合先验知识自动提取感兴趣区域;最后采用卷积神经网络实现颈动脉有无斑块的自动检测。使用上海市奉贤区中心医院提供的数据集,自动检测颈动脉是否有斑块,模型准确度、敏感度、特异度分别达到94.11%、96.30%、91.67%。实验证明基于卷积神经网络检测颈动脉斑块结果和真实值有很高的一致性,且鲁棒性好。
Abstract:
Abstract: A convolutional neural network-based method is proposed for the automatic detection of carotid plaques in ultrasound images. Super-resolution generative adversarial network is used to improve the quality of ultrasonic image, and Gaussian mixture model algorithm is combined with prior knowledge to automatically extract the region of interest. Finally, the automatic detection of carotid plaques is realized by convolutional neural network. Based on the data set provided by Fengxian District Central Hospital in Shanghai, the proposed method is used to automatically detect whether there is plaque in carotid artery, and finally achieves an accuracy, sensitivity and specificity of 94.11%, 96.30% and 91.67%, respectively. Experiments have proved that the results of carotid plaque detection based on convolutional neural network have a high consistency with the true values, and that the proposed method has a good robustness.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(1):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[3]张俊,朱金汉,庄永东,等. 基于卷积神经网络CT/CBCT影像质量自动分析[J].中国医学物理学杂志,2018,35(5):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
 ZHANG Jun,ZHU Jinhan,ZHUANG Yongdong,et al. Automatic analysis of CT/CBCT image quality based on convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(1):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(1):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]申代友,库洪安,皮红英,等. 基于深度相机的老年跌倒监护系统[J].中国医学物理学杂志,2019,36(2):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
 SHEN Daiyou,KU Hongan,PI Hongying,et al. Depth camera-based fall detection system for the elderly[J].Chinese Journal of Medical Physics,2019,36(1):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(1):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]王自强,刘洪运,石金龙,等.基于卷积神经网络的心电图心博识别[J].中国医学物理学杂志,2019,36(8):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
 WANG Ziqiang,LIU Hongyun,SHI Jinlong,et al.ECG heartbeat recognition based on convolution neural network[J].Chinese Journal of Medical Physics,2019,36(1):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
[8]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(1):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[9]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(1):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[10]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
 JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]

备注/Memo

备注/Memo:
【收稿日期】2021-07-18 【基金项目】上海市自然科学基金(19ZR1421500);上海市科委医学引导类科技支撑项目(18411970000);国家自然科学基金青年基金(81101105) 【作者简介】贺桢,硕士,研究方向:医学图像处理,E-mail: zhenhe1995@163.com 【通信作者】石蕴玉,博士,讲师,主要研究方向:视频智能编码及分析,E-mail: yunyushi@sues.edu.cn;杨少玲,博士后,研究方向:超声诊断及治疗,E-mail: drysl@163.com
更新日期/Last Update: 2022-01-17