[1]徐凯成,方志军,蔡清萍,等.全局与局部注意力机制的胃部肿瘤分割算法[J].中国医学物理学杂志,2021,38(4):446-451.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.010]
XU Kaicheng,FANG Zhijun,CAI Qingping,et al.Gastric tumor segmentation algorithm based on global-local attention mechanism[J].Chinese Journal of Medical Physics,2021,38(4):446-451.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.010]
点击复制
全局与局部注意力机制的胃部肿瘤分割算法()
《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]
- 卷:
-
38卷
- 期数:
-
2021年第4期
- 页码:
-
446-451
- 栏目:
-
医学影像物理
- 出版日期:
-
2021-04-29
文章信息/Info
- Title:
-
Gastric tumor segmentation algorithm based on global-local attention mechanism
- 文章编号:
-
1005-202X(2021)04-0446-06
- 作者:
-
徐凯成1; 方志军1; 蔡清萍2; 卫子然2; 高永彬1; 姜晓燕1
-
1.上海工程技术大学电子电气工程学院, 上海 201600; 2.上海长征医院, 上海 200003
- Author(s):
-
XU Kaicheng1; FANG Zhijun1; CAI Qingping2; WEI Ziran2; GAO Yongbin1; JIANG Xiaoyan1
-
1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201600, China 2. Shanghai Changzheng Hospital, Shanghai 200003, China
-
- 关键词:
-
胃部肿瘤; 上腹部CT; 深度学习; 医学影像分割; GLat-Net
- Keywords:
-
gastric tumor upper abdominal CT deep learning medical image segmentation GLat-Net
- 分类号:
-
TP391;R318
- DOI:
-
DOI:10.3969/j.issn.1005-202X.2021.04.010
- 文献标志码:
-
A
- 摘要:
-
通过CT实现术前胃部肿瘤诊断是一种潜在高效的技术方法,而准确的肿瘤影像分割是实现该方法的关键。为了能够精确地提取到肿瘤区域,提出一种基于注意力机制的2D分割网络GLat-Net对上腹部CT影像中的胃部肿瘤区域进行分割,通过增加对肿瘤周围区域的关注,从全局和局部两个角度提取有效的上下文信息;同时在解码模块中引入权重模块突出具有代表性的特征。通过实验结果证明,相比较于其他前沿分割方法,该算法在胃部肿瘤分割上有更高的准确度。
- Abstract:
-
Using CT to realize preoperative gastric tumor diagnosis is a potentially efficient technical method, of which accurate tumor image segmentation is the prerequisite for preoperative diagnosis. In order to achieve a better performance on the extraction of tumor, a 2D segmentation network (GLat-Net) based on attention mechanism is proposed to complete the segmentation of the gastric tumor on upper abdominal CT images, which focuses on the area around the tumor and extracts effective contextual information from global and local perspectives. Furthermore, the weight module is introduced to decoder module for highlighting the representative features. The experiment results show that the proposed approach outperforms current state-of-the-art methods on gastric tumor segmentation, having a higher segmentation accuracy.
备注/Memo
- 备注/Memo:
-
【收稿日期】2020-10-24
【基金项目】上海市科委重点项目(18411952800)
【作者简介】徐凯成,硕士研究生,主要研究方向:图像处理,E-mail:xukch@foxmail.com
【通信作者】方志军,博士,硕士生导师,教授,主要研究方向:图像处理、视频编码以及模式识别,E-mail: zjfang@sues.edu.cn
更新日期/Last Update:
2021-04-29