[1]张泽茹,李兆同,刘良友,等.融合感知损失的深度学习在常规MR图像转换的研究[J].中国医学物理学杂志,2021,38(2):178-185.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.010]
 ZHANG Zeru,LI Zhaotong,et al.Application of deep learning with perceptual loss in conventional MR image translation[J].Chinese Journal of Medical Physics,2021,38(2):178-185.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.010]
点击复制

融合感知损失的深度学习在常规MR图像转换的研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第2期
页码:
178-185
栏目:
医学影像物理
出版日期:
2021-02-02

文章信息/Info

Title:
Application of deep learning with perceptual loss in conventional MR image translation
文章编号:
1005-202X(2021)02-0178-08
作者:
张泽茹12李兆同12刘良友12高嵩1吴奉梁3
1.北京大学医学部医学技术研究院, 北京 100191; 2.北京大学医学人文学院, 北京 100191; 3.北京大学第三医院骨科, 北京 100191
Author(s):
ZHANG Zeru1 2 LI Zhaotong1 2 LIU Liangyou1 2 GAO Song1 WU Fengliang3
1. Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China 2. School of Health Humanities, Peking University, Beijing 100191, China 3. Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
关键词:
磁共振成像多模态图像转换生成式对抗网络
Keywords:
Keywords: magnetic resonance imaging multi-modalities image translation generative adversarial network
分类号:
R445.2;R318
DOI:
DOI:10.3969/j.issn.1005-202X.2021.02.010
文献标志码:
A
摘要:
目的:研究在完全无监督的条件下深度神经网络实现常规磁共振图像间相互转换的可行性。方法:在循环生成式对抗网络(CycleGAN)中引入感知损失,使网络利用对抗损失学习图像结构信息的同时,结合循环一致性损失和感知损失生成高质量的磁共振图像,并将生成图像与CycleGAN模型以及有监督的CycleGAN模型(S_CycleGAN)生成的图像进行定量比较。结果:引入感知损失后的网络生成的图像定量评估值均高于CycleGAN模型生成的图像,生成的T1加权图像(T1WI)的定量评估值也均高于S_CycleGAN模型生成的T1WI,生成的T2加权图像(T2WI)与S_CycleGAN模型生成的T2WI的定量评估值相似。结论:在CycleGAN中引入感知损失,可以在完全无监督的条件下生成高质量的磁共振图像,进而实现高质量的常规磁共振图像的相互转换。
Abstract:
Abstract: Objective To research the feasibility of using deep neural networks to achieve image-to-image translation on conventional magnetic resonance (MR) images in a completely unsupervised way. Methods Perception loss was introduced into cycle generative adversarial network (CycleGAN), so that the proposed network could use the adversarial loss to learn image structure information, and combine cycle consistency loss with perceptual loss to generate high-quality MR image. The generated image was compared quantitatively with those generated by CycleGAN model and supervised CycleGAN model (S_CycleGAN). Results The quantitative evaluation showed that the proposed network with the introduction of perceptual loss was superior to CycleGAN model on imaging, and that the evaluation result of the T1-weighted image generated by the proposed network was also better than that of the image generated by S_CycleGAN model. However, the evaluation results of the T2-weighted images generated by the proposed network and S_CycleGAN model were similar. Conclusion The introduction of perceptual loss to CycleGAN can generate high-quality MR images in a completely unsupervised way, and then realize image-to-image translation on high-quality conventional MR images.

相似文献/References:

[1]王水花,张煜东.压缩感知磁共振成像技术综述[J].中国医学物理学杂志,2015,32(02):158.[doi:10.3969/j.issn.1005-202X.2015.02.002]
[2]马海涵,游 箭,唐文国,等.成人小脑髓母细胞瘤MR成像和NSE表达水平[J].中国医学物理学杂志,2015,32(02):207.[doi:10.3969/j.issn.1005-202X.2015.02.012]
[3]武 杰,袁航英,严 峻,等.医用核磁共振成像设备的风险因素分析与管理[J].中国医学物理学杂志,2014,31(03):4918.[doi:10.3969/j.issn.1005-202X.2014.03.016]
[4]张煜东,王水花.磁共振成像加速方法[J].中国医学物理学杂志,2014,31(04):5015.[doi:10.3969/j.issn.1005-202X.2014.04.010]
[5]万俊,聂生东,王远军,等.基于MRI的脑肿瘤分割技术研究进展[J].中国医学物理学杂志,2013,30(04):4266.[doi:10.3969/j.issn.1005-202X.2013.04.013]
[6]曾雁冰,张战胜,辛学刚,等.反演法在磁共振射频场设计与优化中的应用[J].中国医学物理学杂志,2013,30(04):4272.[doi:10.3969/j.issn.1005-202X.2013.04.014]
[7]王远军,姜博宇,靳珍怡,等.基于小波变换的医学图像融合方法综述[J].中国医学物理学杂志,2013,30(06):4530.[doi:10.3969/j.issn.1005-202X.2013.06.016]
[8]赵 琳,张军,张新宇,等.CT和MRI诊断脑神经胶质瘤52例分析[J].中国医学物理学杂志,2015,32(04):464.[doi:10.3969/j.issn.1005-202X.2015.04.003]
 [J].Chinese Journal of Medical Physics,2015,32(2):464.[doi:10.3969/j.issn.1005-202X.2015.04.003]
[9]赵 琳,张军,张新宇,等.CT和MRI诊断脑神经胶质瘤52例分析[J].中国医学物理学杂志,2015,32(04):464.[doi:10.3969/j.issn.1005-202X.2015.04.003]
[10]骆众星,石健强,谢斯栋,等.T1 FLAIR PROPELLER序列在3.0T磁共振颅脑增强成像上对抑制各种伪影的应用[J].中国医学物理学杂志,2015,32(06):878.[doi:doi:10.3969/j.issn.1005-202X.2015.06.025]
 [J].Chinese Journal of Medical Physics,2015,32(2):878.[doi:doi:10.3969/j.issn.1005-202X.2015.06.025]

备注/Memo

备注/Memo:
【收稿日期】2021-01-04 【基金项目】国家自然科学基金(12075011,82071280);北京市自然科学基金(7202093);西藏自治区重点研发计划(XZ202001ZY0005G) 【作者简介】张泽茹,硕士研究生,研究方向:磁共振成像,E-mail: 2011210185@stu.pku.edu.cn 【通信作者】吴奉梁,博士,副教授,副主任医师,研究方向:脊柱外科,E-mail: wfl79gxy81@163.com
更新日期/Last Update: 2021-02-02