[1]陈婉琦,林勇.基于集成学习的骨质疏松性骨折预测研究[J].中国医学物理学杂志,2021,38(2):254-258.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.023]
 CHEN Wanqi,LIN Yong.Prediction of osteoporotic fracture based on ensemble learning[J].Chinese Journal of Medical Physics,2021,38(2):254-258.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.023]
点击复制

基于集成学习的骨质疏松性骨折预测研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第2期
页码:
254-258
栏目:
医学人工智能
出版日期:
2021-02-02

文章信息/Info

Title:
Prediction of osteoporotic fracture based on ensemble learning
文章编号:
1005-202X(2021)02-0254-05
作者:
陈婉琦林勇
上海理工大学医疗器械与食品学院, 上海 200093
Author(s):
CHEN Wanqi LIN Yong
School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
关键词:
骨质疏松性骨折机器学习集成学习分类预测十折交叉验证
Keywords:
Keywords: osteoporotic fracture machine learning ensemble learning classification prediction ten-fold cross validation
分类号:
R318;R683
DOI:
DOI:10.3969/j.issn.1005-202X.2021.02.023
文献标志码:
A
摘要:
骨质疏松性骨折是老年人发病和死亡的重要原因之一,建立高效的预测模型为老年人尽早提供诊断和治疗建议十分必要。实验利用Stacking构建了一种异构分类器EtDtb-S,将16个相关性较高的特征作为特征向量,选用极端随机树(ET)、基于决策树的装袋集成模型(DTB)作为初级学习器,逻辑回归作为次级学习器进行集成。实验验证将EtDtb-S与单模型、同构分类器进行骨质疏松性骨折预测对比,结果表明异构分类器相对于最优单模型预测精度提高2.8%,相对于最优同构分类器预测精度提高1.5%,具有更高的预测性能。
Abstract:
Abstract: Osteoporotic fracture is one of the important causes of morbidity and death in the elderly. It is necessary to establish an efficient predictive model to provide diagnosis and treatment suggestions for the elderly as soon as possible. In the experiment, Stacking is used to construct a heterogeneous classifier EtDtb-S which uses 16 highly-correlated features as feature vectors, and selects extreme random trees and decision tree-based bagging ensemble models as primary learners, and logistic regression as the secondary learner for ensemble learning. Experimental verification compares EtDtb-S with single model and isomorphic classifiers for osteoporotic fracture prediction. The results show that the prediction accuracy of the heterogeneous classifier is increased by 2.8% and 1.5% as compared with the optimal single model and the optimal isomorphic classifier, respectively. The proposed method has better prediction of osteoporotic fracture.

相似文献/References:

[1]王美娇,李莎,岳海振,等. Model Analytics辅助的智能放疗计划建模[J].中国医学物理学杂志,2017,34(9):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
 [J].Chinese Journal of Medical Physics,2017,34(2):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
[2]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(2):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[3]刘渊,程玉玉,贺睿敏,等.基于机器学习的鼻咽癌转移淋巴结鉴别模型[J].中国医学物理学杂志,2019,36(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
 LIU Yuan,CHENG Yuyu,HE Ruimin,et al.Machine learning-based classification model of lymph node metastasis in nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2019,36(2):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
[4]孙凯,姚旭峰,马风玲,等.基于机器学习的血细胞分类研究进展[J].中国医学物理学杂志,2020,37(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
 SUN Kai,YAO Xufeng,et al.Blood cell classification based on machine learning[J].Chinese Journal of Medical Physics,2020,37(2):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
[5]雷炳业,潘嘉瑜,吴逢春,等.基于机器学习的神经精神疾病辅助诊断研究进展[J].中国医学物理学杂志,2020,37(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
 LEI Bingye,PAN Jiayu,et al.Advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning[J].Chinese Journal of Medical Physics,2020,37(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
[6]李彩,范炤.基于机器学习的阿尔兹海默症分类预测[J].中国医学物理学杂志,2020,37(3):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
 LI Cai,FAN Zhao.Classification and prediction of Alzheimer’s disease based on machine learning[J].Chinese Journal of Medical Physics,2020,37(2):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
[7]闫凤,牛振洋,费振乐,等.机器学习在肺癌VMAT计划中对危及器官剂量预测的可行性[J].中国医学物理学杂志,2020,37(7):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
 YAN Feng,NIU Zhenyang,FEI Zhenle,et al.Feasibility of machine learning in OAR dosimetric prediction in VMAT plan for lung cancer[J].Chinese Journal of Medical Physics,2020,37(2):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
[8]黄仕雄,杨松华,王亮,等.基于预测剂量引导的宫颈癌自动计划研究[J].中国医学物理学杂志,2020,37(9):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
 HUANG Shixiong,YANG Songhua,WANG Liang,et al.Automatic planning of radiotherapy for cervical carcinoma based on dose prediction[J].Chinese Journal of Medical Physics,2020,37(2):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
[9]陈思佳,石丽婉,林勤.基于知识的放射治疗技术研究[J].中国医学物理学杂志,2020,37(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
 CHEN Sijia,SHI Liwan,LIN Qin.Research on knowledge-based radiation therapy[J].Chinese Journal of Medical Physics,2020,37(2):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
[10]马晶,蔡文杰,杨利.基于机器学习的心音识别分类研究[J].中国医学物理学杂志,2021,38(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.013]
 MA Jing,CAI Wenjie,YANG Li.Research on heart sounds classification based on machine learning[J].Chinese Journal of Medical Physics,2021,38(2):75.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.013]
[11]余锦娟,林勇. 基于机器学习的骨质疏松性骨折预测研究[J].中国医学物理学杂志,2018,35(11):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
 YU Jinjuan,LIN Yong. Prediction of osteoporotic fractures based on machine learning[J].Chinese Journal of Medical Physics,2018,35(2):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]

备注/Memo

备注/Memo:
【收稿日期】2020-08-26 【基金项目】国家自然科学基金(31301092) 【作者简介】陈婉琦,硕士在读,研究方向:机器学习、生物信息处理,E-mail: chen_wanqi0714@163.com 【通信作者】林勇,博士,副教授,研究方向:机器学习、生物信息处理,E-mail: yong_lynn@163.com
更新日期/Last Update: 2021-02-04