[1]弥佳,周宇佳,冯前进.基于生成对抗网络的无监督动态对比增强磁共振分解方法[J].中国医学物理学杂志,2021,38(2):186-192.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.011]
 MI Jia,ZHOU Yujia,FENG Qianjin.Unsupervised image decomposition of DCE-MRI based on generative adversarial networks[J].Chinese Journal of Medical Physics,2021,38(2):186-192.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.011]
点击复制

基于生成对抗网络的无监督动态对比增强磁共振分解方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第2期
页码:
186-192
栏目:
医学影像物理
出版日期:
2021-02-02

文章信息/Info

Title:
Unsupervised image decomposition of DCE-MRI based on generative adversarial networks
文章编号:
1005-202X(2021)02-0186-07
作者:
弥佳周宇佳冯前进
南方医科大学生物医学工程学院/广东省医学图像重点实验室, 广东 广州510515
Author(s):
MI Jia ZHOU Yujia FENG Qianjin
School of Biomedical Engineering, Southern Medical University/Key Laboratory for Medical Image Processing in Guangdong Province, Guangzhou 510515, China
关键词:
深度学习生成对抗网络图像分解动态对比增强磁共振
Keywords:
Keywords: deep leaning generative adversarial network image decomposition dynamic contrast-enhanced magnetic resonance imaging
分类号:
R318;TP183
DOI:
DOI:10.3969/j.issn.1005-202X.2021.02.011
文献标志码:
A
摘要:
为排除动态对比增强磁共振(DCE-MRI)中造影剂对图像定量分析的影响,可以使用图像分解的方法,将图像中造影剂造成的灰度变化分解出去,并保持其他内容不变。本文提出一种基于生成对抗网络的无监督图像分解方法,以实现对DCE-MRI中造影剂造成的灰度变化的分解。该方法假设增强图像由增强成分和解剖成分组成,基于对各成分复杂度的先验设计生成器,通过双路生成网络,同时但独立地提取解剖成分和增强成分的信息。同时,引入图像重构损失作为反馈信号来约束生成。在MNIST数据集上基于MSE、SSIM、PSNR与现有的方法进行对比,验证了该方法的有效性。并在临床的肝部DCE-MRI数据进行了实验。实验表明该方法可以在没有成对训练数据的情况下有效实现DCE-MRI图像分解。
Abstract:
Abstract: Image decomposition can be used to separate the grayscale variations caused by contrast agent from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) image, with other contents unchanged, thereby eliminating the effects of contrast agent on quantitative analysis. An unsupervised image decomposition method based on generative adversarial networks is proposed to achieve the separation of grayscale variations caused by contrast agent in DCE-MRI. The method assumes that the enhanced image is composed of contrast component and anatomy component, and two generators are designed based on the complexity of each component. Through the double-generator, the information of anatomy component and contrast component can be extracted simultaneously and independently. Meanwhile, the image reconstruction loss is introduced as a feedback signal to constrain the generation. Mean-square error, peak signal to noise ratio and structural similarity index are used to compare the proposed method with the existing methods on MNIST dataset, thus verifying the effectiveness of the proposed method. Moreover, some experiments are carried out on clinical liver DCE-MRI data, and the experimental results show that the proposed method can be used to effectively achieve DCE-MRI image decomposition without paired training data.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(2):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(2):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(2):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(2):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(2):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(2):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(2):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(2):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(2):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[11]周金治,胡震,郭莉莉,等.基于GAN-DAUnet的肝脏CT图像肿瘤分割算法[J].中国医学物理学杂志,2023,40(8):971.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.008]
 ZHOU Jinzhi,HU Zhen,et al.Liver CT image tumor segmentation algorithm based on GAN-DAUnet[J].Chinese Journal of Medical Physics,2023,40(2):971.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.008]

备注/Memo

备注/Memo:
【收稿日期】2020-10-02 【基金项目】国家自然科学基金(81801780,81974275) 【作者简介】弥佳,在读硕士,研究方向:医学图像分析与处理,E-mail: 2195775838@qq.com 【通信作者】冯前进,教授,博士生导师,主要研究方向:医学成像与图像分析,E-mail: qianjinfeng08@gmail.com
更新日期/Last Update: 2021-02-02