[1]陈思佳,石丽婉,林勤.基于知识的放射治疗技术研究[J].中国医学物理学杂志,2020,37(11):1350-1355.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
 CHEN Sijia,SHI Liwan,LIN Qin.Research on knowledge-based radiation therapy[J].Chinese Journal of Medical Physics,2020,37(11):1350-1355.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
点击复制

基于知识的放射治疗技术研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第11期
页码:
1350-1355
栏目:
医学放射物理
出版日期:
2020-12-02

文章信息/Info

Title:
Research on knowledge-based radiation therapy
文章编号:
1005-202X(2020)11-1350-06
作者:
陈思佳石丽婉林勤
厦门大学附属第一医院肿瘤放疗科, 福建 厦门 361000
Author(s):
CHEN Sijia SHI Liwan LIN Qin
Department of Radiotherapy, the First Affiliated Hospital of Xiamen University, Xiamen 361000, China
关键词:
基于知识的放射治疗技术机器学习人工智能综述
Keywords:
Keywords: knowledge-based radiation therapy machine learning artificial intelligence review
分类号:
R815
DOI:
DOI:10.3969/j.issn.1005-202X.2020.11.002
文献标志码:
A
摘要:
文章介绍了基于知识的放射治疗技术(KBRT)相关概念和KBRT技术的实现方法,重点介绍了KBRT中的特征检索法以及在机器学习上的应用。随后回顾了当前KBRT在多部位肿瘤放疗中的应用及对于剂量学评价标准的改进、KBRT模型相关参数和离群值的研究以及KBRT与多种放疗技术相结合等研究热点。文章还指出了KBRT技术在现阶段遇到的问题和挑战,从而进一步提出了KBRT在今后研究中的发展方向,并对KBRT在多中心合作、自适应放疗以及在机器学习方法的深入研究等相关话题展开讨论。
Abstract:
Abstract: This paper introduces the related concepts of knowledge-based radiation therapy (KBRT) and the implementation methods of KBRT technology, with emphasis on the featured retrieval method in KBRT and its application in machine learning. This paper then reviews some research hotspots such as the current application of KBRT in different kinds of tumor radiotherapy, the improvement of dosimetric evaluation standards, the study of related parameters and outliers of KBRT model, and the combination of several radiotherapy technologies. This paper also points out the problems and challenges encountered in the current stage of KBRT technology, thus further suggesting the development direction of KBRT in future research and discussing the related topics such as KBRT in multicenter cooperation, adaptive radiotherapy and in-depth study of machine learning methods.

相似文献/References:

[1]王美娇,李莎,岳海振,等. Model Analytics辅助的智能放疗计划建模[J].中国医学物理学杂志,2017,34(9):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
 [J].Chinese Journal of Medical Physics,2017,34(11):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
[2]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(11):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[3]余锦娟,林勇. 基于机器学习的骨质疏松性骨折预测研究[J].中国医学物理学杂志,2018,35(11):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
 YU Jinjuan,LIN Yong. Prediction of osteoporotic fractures based on machine learning[J].Chinese Journal of Medical Physics,2018,35(11):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
[4]刘渊,程玉玉,贺睿敏,等.基于机器学习的鼻咽癌转移淋巴结鉴别模型[J].中国医学物理学杂志,2019,36(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
 LIU Yuan,CHENG Yuyu,HE Ruimin,et al.Machine learning-based classification model of lymph node metastasis in nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2019,36(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
[5]孙凯,姚旭峰,马风玲,等.基于机器学习的血细胞分类研究进展[J].中国医学物理学杂志,2020,37(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
 SUN Kai,YAO Xufeng,et al.Blood cell classification based on machine learning[J].Chinese Journal of Medical Physics,2020,37(11):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
[6]雷炳业,潘嘉瑜,吴逢春,等.基于机器学习的神经精神疾病辅助诊断研究进展[J].中国医学物理学杂志,2020,37(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
 LEI Bingye,PAN Jiayu,et al.Advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning[J].Chinese Journal of Medical Physics,2020,37(11):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
[7]李彩,范炤.基于机器学习的阿尔兹海默症分类预测[J].中国医学物理学杂志,2020,37(3):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
 LI Cai,FAN Zhao.Classification and prediction of Alzheimer’s disease based on machine learning[J].Chinese Journal of Medical Physics,2020,37(11):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
[8]闫凤,牛振洋,费振乐,等.机器学习在肺癌VMAT计划中对危及器官剂量预测的可行性[J].中国医学物理学杂志,2020,37(7):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
 YAN Feng,NIU Zhenyang,FEI Zhenle,et al.Feasibility of machine learning in OAR dosimetric prediction in VMAT plan for lung cancer[J].Chinese Journal of Medical Physics,2020,37(11):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
[9]黄仕雄,杨松华,王亮,等.基于预测剂量引导的宫颈癌自动计划研究[J].中国医学物理学杂志,2020,37(9):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
 HUANG Shixiong,YANG Songhua,WANG Liang,et al.Automatic planning of radiotherapy for cervical carcinoma based on dose prediction[J].Chinese Journal of Medical Physics,2020,37(11):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
[10]马晶,蔡文杰,杨利.基于机器学习的心音识别分类研究[J].中国医学物理学杂志,2021,38(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.013]
 MA Jing,CAI Wenjie,YANG Li.Research on heart sounds classification based on machine learning[J].Chinese Journal of Medical Physics,2021,38(11):75.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.013]

备注/Memo

备注/Memo:
【收稿日期】2020-05-10 【基金项目】国家自然科学基金(81772893) 【作者简介】陈思佳,工程师,放疗物理师,E-mail: cscscsj@163.com
更新日期/Last Update: 2020-12-02