[1]吴雪,王娆芬.基于1D-ECNN的短时心电信号疲劳分类[J].中国医学物理学杂志,2021,38(9):1136-1141.[doi:10.3969/j.issn.1005-202X.2021.09.016]
 WU Xue,WANG Raofen.Classification of fatigue states based on short-term ECG signal and 1D-ECNN[J].Chinese Journal of Medical Physics,2021,38(9):1136-1141.[doi:10.3969/j.issn.1005-202X.2021.09.016]
点击复制

基于1D-ECNN的短时心电信号疲劳分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第9期
页码:
1136-1141
栏目:
医学信号处理与医学仪器
出版日期:
2021-09-26

文章信息/Info

Title:
Classification of fatigue states based on short-term ECG signal and 1D-ECNN
文章编号:
1005-202X(2021)09-1136-06
作者:
吴雪王娆芬
上海工程技术大学电子电气工程学院,上海201620
Author(s):
WU Xue WANG Raofen
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
关键词:
疲劳状态一维双卷积神经网络短时心电信号
Keywords:
fatigue state one-dimensional double convolutional neural network short-term electrocardiogram signal
分类号:
R318;TP391
DOI:
10.3969/j.issn.1005-202X.2021.09.016
文献标志码:
A
摘要:
提出一维双卷积神经网络(1D-ECNN),基于采集的心电信号检测操作员的疲劳状态。1D-ECNN包括4 个卷积 层、2个最大池化层、1个全连接层和1个softmax输出层。本研究仅使用较少的卷积核数量,这将减少模型参数的数量,降 低模型的复杂程度,提高模型训练的速度,同时避免传统方法中复杂的特征提取过程或特征选择过程。将心电信号分成 时间长度为1 s的样本,送入1D-ECNN,基于短时心电信号进行操作员疲劳状态分类。仿真结果表明,本文方法的平均分 类准确率高达95.72%,能够实时准确地检测操作员的疲劳状态。此外,可以较好地消除个体差异性的影响。
Abstract:
One-dimensional double convolutional neural network (1D-ECNN) which includes 4 convolutional layers, 2 maximum pooling layers, 1 fully connected layer and 1 softmax output layer is proposed for detecting the fatigue state of the operator based on the acquired electrocardiogram (ECG) signals. Only a small number of convolutional cores are used in this study, which can reduce the number of model parameters, decrease the complexity of the model and increase the speed of model training, and meanwhile, it avoids the complicated feature extraction process or feature selection process in traditional methods. The acquired ECG signal is divided into samples with a time length of 1 s and then put into 1D-ECNN for classifying the fatigue state of the operator based on the short-term ECG signal. The simulation results show that the average classification accuracy of the proposed method is up to 95.72%, indicating that the proposed method can accurately detect the fatigue state of the operator in real time. In addition, it can better eliminate the effects of individual differences.

备注/Memo

备注/Memo:
【收稿日期】2021-03-25 【基金项目】国家自然科学基金(61803255, 71701124);上海市自然科 学基金(18ZR1416700) 【作者简介】吴雪,硕士,研究方向:生理信号处理和模式识别,E-mail: 445246971@qq.com 【通信作者】王娆芬,博士,副教授,研究方向:智能建模、生理信号分 析及疲劳识别等,E-mail: rfwangsues@163.com
更新日期/Last Update: 2021-09-27