相似文献/References:
[1]申严,杨普查,卓宋明.床旁超声联合支气管镜在被动卧床肺炎患者住院管理评估指标中的价值[J].中国医学物理学杂志,2019,36(8):933.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.014]
SHEN Yan,YANG Pucha,ZHUO Songming.Value of bedside ultrasound combined with bronchoscopy in the index evaluation of inpatient management for bedridden patients with pneumonia[J].Chinese Journal of Medical Physics,2019,36(4):933.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.014]
[2]陈静,于勇,段海峰,等.基于定量CT对新型冠状病毒肺炎肺部改变的纵向研究[J].中国医学物理学杂志,2020,37(4):445.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.009]
CHEN Jing,YU Yong,DUAN Haifeng,et al.Longitudinal study of lung changes induced by COVID-19 based on quantitative CT[J].Chinese Journal of Medical Physics,2020,37(4):445.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.009]
[3]邓靓娜,张斌,蒋健,等.窗宽和层厚在COVID-19磨玻璃征象中的诊断价值[J].中国医学物理学杂志,2020,37(5):619.[doi:10.3969/j.issn.1005-202X.2020.05.017]
DENG Liangna,,et al.Diagnostic value of window width and slice thickness in ground glass opacity of COVID-19[J].Chinese Journal of Medical Physics,2020,37(4):619.[doi:10.3969/j.issn.1005-202X.2020.05.017]
[4]邓靓娜,薛彩强,林晓强,等.新型冠状病毒肺炎的影像学应用及进展[J].中国医学物理学杂志,2020,37(6):726.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.013]
DENG Liangna,,et al.Application progress of imaging in COVID-19[J].Chinese Journal of Medical Physics,2020,37(4):726.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.013]
[5]乔文俊,许乙凯,严承功,等.新型冠状病毒肺炎期间方舱CT感染防控经验[J].中国医学物理学杂志,2020,37(7):903.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.020]
QIAO Wenjun,XU Yikai,et al.Experience of COVID-19 prevention and control in shelter CT[J].Chinese Journal of Medical Physics,2020,37(4):903.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.020]
[6]韩冬,于勇,贺太平,等.基于密度分布特征及机器学习诊断COVID-19相关性肺炎[J].中国医学物理学杂志,2021,38(3):387.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.022]
HAN Dong,YU Yong,HE Taiping,et al.Diagnosis of COVID-19 associated pneumonia based on density distribution features and machine learning[J].Chinese Journal of Medical Physics,2021,38(4):387.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.022]
[7]董芳芬,陈群,李诺兮,等.基于深度学习的儿童肺炎检测模型建立及应用[J].中国医学物理学杂志,2022,39(12):1579.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.020]
DONG Fangfen,CHEN Qun,et al.Establishment and application of a deep learning-based model for pneumonia detection in children[J].Chinese Journal of Medical Physics,2022,39(4):1579.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.020]
[8]李碧草,王晶,郭旭伟,等.基于多尺度特征融合与反向注意力的COVID-19病灶分割[J].中国医学物理学杂志,2023,40(4):403.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.002]
LI Bicao,WANG Jing,GUO Xuwei,et al.COVID-19 lesion segmentation based on multi-scale feature fusion and reverse attention[J].Chinese Journal of Medical Physics,2023,40(4):403.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.002]
[9]张子宇,赵可辉,牛慧芳,等.基于轻量级RG-DenseNet的COVID-19 CT图像分类[J].中国医学物理学杂志,2023,40(12):1494.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.007]
ZHANG Ziyu,ZHAO Kehui,NIU Huifang,et al.COVID-19 classification on CT image using lightweight RG DenseNet[J].Chinese Journal of Medical Physics,2023,40(4):1494.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.007]
[10]齐瑜鹏,赵言龙,郑浩然.一种通过代谢差异分析抑制SARS-CoV-2复制的靶点预测方法[J].中国医学物理学杂志,2023,40(12):1577.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.019]
QI Yupeng,ZHAO Yanlong,ZHENG Haoran.Target prediction approach to inhibit SARS-CoV-2 replication based on metabolic difference analysis[J].Chinese Journal of Medical Physics,2023,40(4):1577.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.019]