[1]邓竹琴,俞永伟.改进型深度学习模型在乳腺肿瘤良恶性鉴别中的应用[J].中国医学物理学杂志,2020,37(11):1469-1473.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.023]
 DENG Zhuqin,YU Yongwei.Application of improved deep learning model in differential diagnosis of benign and malignant breast tumors[J].Chinese Journal of Medical Physics,2020,37(11):1469-1473.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.023]
点击复制

改进型深度学习模型在乳腺肿瘤良恶性鉴别中的应用()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第11期
页码:
1469-1473
栏目:
医学人工智能
出版日期:
2020-12-02

文章信息/Info

Title:
Application of improved deep learning model in differential diagnosis of benign and malignant breast tumors
文章编号:
1005-202X(2020)11-1469-05
作者:
邓竹琴1俞永伟2
1.中国人民解放军联勤保障部队第901医院妇产科, 安徽 合肥 230031; 2.安徽省合肥市长荣医院普外科, 安徽 合肥 230001
Author(s):
DENG Zhuqin1 YU Yongwei2
1. Department of Obstetrics and Gynecology, The Peoples Liberation Army Joint Service Support Unit No.901 Hospital, Hefei 230031, China 2. Department of General Surgery, Changrong Hospital, Hefei 230001, China
关键词:
卷积神经网络乳腺癌细胞识别图像识别
Keywords:
Keywords: Convolutional neural network breast tumor cell recognition image recognition
分类号:
R318;R377.9
DOI:
DOI:10.3969/j.issn.1005-202X.2020.11.023
文献标志码:
A
摘要:
目的:解决传统方法在临床中对病理图像检测不足以及人工判断导致的错误判断等问题。方法:使用乳腺肿瘤细胞数据集,首先对数据集进行数据增强,增强后数据集为原来的2倍,将增强后数据集输入到本文提出的模型中进行训练。结果:经过100次迭代,训练集的准确率为97.44%,在测试集中准确率为96.4%,召回率为95.5%,与同类型文献相比都有明显提高。结论:本文章提出的改进型卷积神经网络具有收敛快,泛化好等特点。可以对乳腺肿瘤细胞的良恶性进行有效的辨识分类。
Abstract:
Abstract: Objective To improve the defects and deficiency of traditional methods in clinical pathological image detection and to solve the problem of misjudgment made by human. Methods The data sets of breast tumor cells are from clinical date. The data sets were enhanced two fold at first and put into the proposed model for training. Results After 100 times of iterations, the accuracy of validation set arrives 97.44%, the test set 96.4%, and the recall rate 95.5%.They are obviously improved compared with the same type of literature. Conclusion The improved convolutional neural network proposed in this paper has advantages of rapid convergence and excellent generalization ability. It can identify and classify the benign and malignant breast tumor cells effectively.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(11):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(11):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[3]张俊,朱金汉,庄永东,等. 基于卷积神经网络CT/CBCT影像质量自动分析[J].中国医学物理学杂志,2018,35(5):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
 ZHANG Jun,ZHU Jinhan,ZHUANG Yongdong,et al. Automatic analysis of CT/CBCT image quality based on convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(11):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(11):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]申代友,库洪安,皮红英,等. 基于深度相机的老年跌倒监护系统[J].中国医学物理学杂志,2019,36(2):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
 SHEN Daiyou,KU Hongan,PI Hongying,et al. Depth camera-based fall detection system for the elderly[J].Chinese Journal of Medical Physics,2019,36(11):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(11):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]王自强,刘洪运,石金龙,等.基于卷积神经网络的心电图心博识别[J].中国医学物理学杂志,2019,36(8):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
 WANG Ziqiang,LIU Hongyun,SHI Jinlong,et al.ECG heartbeat recognition based on convolution neural network[J].Chinese Journal of Medical Physics,2019,36(11):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
[8]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(11):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[9]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[10]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
 JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(11):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]

备注/Memo

备注/Memo:
【收稿日期】2020-07-15 【作者简介】邓竹琴,妇产科主治医师,E-mail: 951340480@qq.com 【通信作者】俞永伟,普外科主治医师,E-mail: 278718482@qq.com
更新日期/Last Update: 2020-12-02