[1]吴香奕,曹锋,曹瑞芬,等.基于循环一致性生成对抗网络的盆腔伪CT生成方法[J].中国医学物理学杂志,2021,38(1):21-29.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.005]
 WU Xiangyi,CAO Feng,CAO Ruifen,et al.The method of pelvic synthetic CT generation based on the cycle-consistent generative adversarial networks[J].Chinese Journal of Medical Physics,2021,38(1):21-29.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.005]
点击复制

基于循环一致性生成对抗网络的盆腔伪CT生成方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第1期
页码:
21-29
栏目:
医学影像物理
出版日期:
2021-01-29

文章信息/Info

Title:
The method of pelvic synthetic CT generation based on the cycle-consistent generative adversarial networks
文章编号:
1005-202X(2021)01-0021-09
作者:
吴香奕1曹锋2曹瑞芬3吴茜4董江宁2徐榭1裴曦15
1.中国科学技术大学物理学院工程与应用物理系, 安徽 合肥 230025; 2.中国科学技术大学第一附属医院影像科, 安徽 合肥 230001; 3.安徽大学计算机科学与技术学院, 安徽 合肥 230601; 4.安徽医科大学人文医学院, 安徽 合肥 230032; 5.安徽慧软科技有限公司, 安徽 合肥 230088
Author(s):
WU Xiangyi1 CAO Feng2 CAO Ruifen3 WU Qian4 DONG Jiangning2 X. George Xu1 PEI Xi1 5
1. School of Physical Sciences, University of Science and Technology of China, Hefei, 230025, China 2. Department of Medical Imaging, the First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China 3. College of Computer Science and Technology, Anhui University, Hefei 230601, China 4. School of Humanistic Medicine, Anhui Medical University, Hefei 230032, China 5. Anhui Wisdom Technology Co. Ltd, Hefei 230088, China
关键词:
伪CT非配对盆腔磁共振成像循环一致性生成对抗网络
Keywords:
Keywords: synthetic CT unpaired pelvis MRI CycleGAN
分类号:
R318;TP391.41
DOI:
DOI:10.3969/j.issn.1005-202X.2021.01.005
文献标志码:
A
摘要:
目的:基于循环一致性生成对抗网络(CycleGAN),利用非配对患者盆腔部位数据,实现MRI和CT图像之间的相互转换,并对基于该模型生成的盆腔伪CT(sCT)进行精度和剂量性能的评估。方法:该CycleGAN网络包含两个生成器和两个判别器。先基于全卷积网络(FCNs)构建两个生成器,一个将2D盆腔MRI转换为2D盆腔sCT图像,另一个将CT图像转换为伪MRI(sMRI)图像。再基于FCNs构建两个判别器,用于对真实图像和生成的伪图像进行判别,提升生成图像的质量。为保证sCT图像与MRI图像的一致性,引入归一化互信息作为相似性约束损失项,对模型进行改进。训练集包括35例患者盆腔部位的T1-MRI图像和另外36例患者盆腔部位的CT图像,测试集包括10例盆腔部位患者的MRI和CT图像,评估方法包括sCT与CT图像的误差和放疗剂量伽马通过率。结果:对于测试集中所有病例,生成的sCT与真实CT图像之间的平均绝对误差(MAE)为35.537(±4.537) HU;基于体素的平均剂量差异最大为0.49%;以3%/3 mm、2%/2 mm和1%/1 mm为标准的平均伽马通过率分别高于99%、98%和95%。结论:使用CycleGAN网络和非配对患者训练数据可以生成准确且符合临床剂量精度要求的盆腔部位sCT图像。
Abstract:
Abstract: Objective Based on the Cycle-Consistent Generative Adversarial Networks (CycleGAN), pelvic data from unpaired patients are applied to achieve interconversion between MRI images and CT images, and the accuracy and dose performance of synthetic CT (sCT) images generated based on this model are assessed. Methods This CycleGAN network includes two generators and two discriminators. Based on fully convolutional networks (FCNs), two generators were constructed first. One converted 2D pelvic MRI images to 2D pelvic sCT images, and the other converted CT images to synthetic MRI (sMRI) images. Based on FCNs, two discriminators were then constructed for discriminating real images and generated synthetic images to facilitate the sCT/sMRI quality improvement. To ensure the consistency between sCT images and MRI images, normalized mutual information was applied as a similarity-constraint loss term to improve the model. The training set consists of T1-weighted pelvic MRI images from 35 patients and pelvic CT images from an additional 36 patients, and the test set consists of pelvic MRI images and CT images from 10 patients. Assessment methods included errors between sCT images and CT images and the radiation dose gamma pass rates. Results For all the cases in the test set, the mean absolute error (MAE) between the generated sCT images and the true CT images was 35.537 (±4.537) HU. The maximum voxel-based mean dose difference was 0.49%. The mean gamma pass rates were above 99%, 98% and 95% with 3%/3 mm, 2%/2 mm, and 1%/1 mm criteria, respectively. Conclusion Accurate pelvic sCT images can be generated by using CycleGAN network and unpaired training data from different patients, and the dose accuracy calculated based on the sCT images meets the clinical requirements.

相似文献/References:

[1]周琼,李永武,王奇,等. 基于形变配准和伪CT的鼻咽癌自适应放疗剂量评估[J].中国医学物理学杂志,2019,36(8):892.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.006]
 ZHOU Qiong,LI Yongwu,WANG Qi,et al. Dosimetric evaluation of adaptive radiotherapy for nasopharyngeal carcinoma based on deformable registration and synthetic CT[J].Chinese Journal of Medical Physics,2019,36(1):892.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.006]
[2]陈丽霞,亓孟科,宋婷,等.基于分段B样条形变配准方法的头颈部伪CT生成研究[J].中国医学物理学杂志,2022,39(1):44.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.008]
 CHEN Lixia,QI Mengke,SONG Ting,et al.Head and neck synthetic-CT generation based on segmented B-spline deformable registration method[J].Chinese Journal of Medical Physics,2022,39(1):44.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.008]

备注/Memo

备注/Memo:
【收稿日期】2020-07-11 【基金项目】国家自然科学基金(11575180);安徽省自然科学基金(1908085MA27);安徽省重点研究与开发计划(1804a09020039);安徽省高校自然科学研究项目(KJ2019A0240) 【作者简介】吴香奕,硕士,主要从事医学图像处理、深度学习等研究,E-mail: shiangyi@mail.ustc.edu.cn 【通信作者】裴曦,博士,副教授,主要从事医学物理、人工智能和医学影像等研究,E-mail: xpei@ustc.edu.cn
更新日期/Last Update: 2021-01-29