[1]刘子楠,黎河山,宋枭禹.蛋白质结构预测综述[J].中国医学物理学杂志,2020,37(9):1203-1207.[doi:10.3969/j.issn.1005-202X.2020.09.023]
 LIU Zinan,LI Heshan,SONG Xiaoyu.Survey on protein structure predication[J].Chinese Journal of Medical Physics,2020,37(9):1203-1207.[doi:10.3969/j.issn.1005-202X.2020.09.023]
点击复制

蛋白质结构预测综述()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第9期
页码:
1203-1207
栏目:
医学人工智能
出版日期:
2020-09-25

文章信息/Info

Title:
Survey on protein structure predication
文章编号:
1005-202X(2020)09-1203-05
作者:
刘子楠黎河山宋枭禹
哈尔滨工业大学生命科学与技术学院,黑龙江哈尔滨150080
Author(s):
LIU Zinan LI Heshan SONG Xiaoyu
School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
关键词:
蛋白质结构预测深度学习同源建模自由建模综述
Keywords:
protein structure prediction deep learning homology modeling ab initio prediction review
分类号:
R318;Q71
DOI:
10.3969/j.issn.1005-202X.2020.09.023
文献标志码:
A
摘要:
蛋白质结构预测对于从分子层面理解蛋白质的生物功能具有重要意义。本研究从同源建模、自由建模等经典方法 以及深度学习这几个方面来阐述蛋白质结构预测方面的进展。已知结构蛋白质模板数量的增加、序列比对等算法对信息 提取能力的提升以及片段拼接技术的应用使得同源建模在预测蛋白结构的能力大大提升。域分割和片段分割技术及并 行计算策略的应用使得自由建模方法在预测远程氨基酸接触能力不断提升。深度学习技术与以上经典方法的结合提升 了蛋白结构预测的准确性和速度,但是对于没有同源性蛋白结构的预测,仍然存在巨大的挑战。
Abstract:
The prediction of protein structure has provided important underpinnings for understanding the biological functions of protein at molecular level. Herein the development of protein structure predication is reviewed from the aspects of homology modeling, ab initio prediction and deep learning. Because of the increasing number of protein templates with known structure, the improved performance of sequence alignment algorithm for information extraction and the application of fragment assembly technology, the ability of homology modeling for predicting protein structure is greatly increased. The prediction of long-distance amino-acid contact using ab initio method is more and more precise for the application of regional partition and fragment segmentation and the strategy of parallel computing in ab initio method. Deep learning combined with the above-mentioned classical technologies can promote the accuracy and speed of protein structure prediction, but there is still a great challenge when the protein has no homologous proteins.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(9):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(9):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(9):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(9):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(9):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(9):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(9):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(9):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(9):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]

备注/Memo

备注/Memo:
【收稿日期】2020-03-14 【作者简介】刘子楠,硕士研究生,研究方向:生物医学工程,E-mail: lzn_home@qq.com 【通信作者】宋枭禹,E-mail: songxyhit@hit.edu.cn
更新日期/Last Update: 2020-09-25