[1]陈真诚,杨薛冰,邹春林,等.基于无创血糖的糖尿病评估[J].中国医学物理学杂志,2020,37(10):1330-1334.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.020]
 CHEN Zhencheng,YANG Xuebing,ZOU Chunlin,et al.Diabetes evaluation based on noninvasive blood glucose[J].Chinese Journal of Medical Physics,2020,37(10):1330-1334.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.020]
点击复制

基于无创血糖的糖尿病评估()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第10期
页码:
1330-1334
栏目:
医学人工智能
出版日期:
2020-10-29

文章信息/Info

Title:
Diabetes evaluation based on noninvasive blood glucose
文章编号:
1005-202X(2020)10-1330-05
作者:
陈真诚1杨薛冰1邹春林2严波文1朱健铭3梁永波3
1.桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004; 2.广西医科大学转化医学研究中心, 广西 南宁 530021; 3.桂林电子科技大学生命与环境科学学院, 广西 桂林 541004
Author(s):
CHEN Zhencheng1 YANG Xuebing1 ZOU Chunlin2 YAN Bowen1 ZHU Jianming3 LIANG Yongbo3
1. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China 2. Transforming Medical Research Center, Guangxi Medical University, Nanning 530021, China 3. School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
关键词:
糖尿病糖化血红蛋白糖耐量受损神经网络K-近邻算法
Keywords:
Keywords: diabetes glycosylated hemoglobin impaired glucose tolerance neural network K-nearest neighbor algorithm
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2020.10.020
文献标志码:
A
摘要:
为了提高糖尿病前期的检出率,在糖耐量受损(IGT)常规诊断方法的基础上,增加糖化血红蛋白作为糖尿病筛查的因素,构建一个IGT检测模型。采集受试者的身高、体质量、腹围、血压、皮脂厚度、空腹血糖和糖化血红蛋白作为模型的特征输入,用K-近邻算法和神经网络对其分类,模型输出包括血糖值正常、IGT和糖尿病。结果显示增加糖化血红蛋白作为分类特征后,神经网络和K-近邻算法的分类准确率分别为88.89%和93.09%,明显高于传统方法的分类准确率(83.33%和78.38%)。本研究提出的IGT检测模型对糖尿病的临床诊断有重要意义。
Abstract:
Abstract: On the basis of routine methods for diagnosing impaired glucose tolerance (IGT), an IGT detection model is constructed by adding glycosylated hemoglobin as the factor of diabetes screening, thereby improving the detection rate of pre-diabetes. The height, body weight, abdominal circumference, blood pressure, thickness of sebum, fasting blood glucose and glycosylated hemoglobin of subjects were collected as the feature inputs of the model, and then the subjects were classified by K-nearest neighbor algorithm and neural network. The output of the model included normal blood glucose, IGT and diabetes. The results show that after adding glycosylated hemoglobin as the factor of diabetes screening, the classification accuracies of neural network and K-nearest neighbor algorithm are 88.89% and 93.09%, respectively, which are significantly higher than 83.33% and 78.38% of traditional methods. The proposed IGT detection model is of great significance for the clinical diagnosis of diabetes.

相似文献/References:

[1]雍军光,阮 萍,沈洪涛,等.新型显微成像与分析系统在糖尿病患者红细胞定量研究中的应用[J].中国医学物理学杂志,2014,31(04):5081.[doi:10.3969/j.issn.1005-202X.2014.04.023]
[2]赵承奇,雷涛,罗二平,等.脉冲电磁场对糖尿病大鼠外周神经病变的影响[J].中国医学物理学杂志,2013,30(05):4431.[doi:10.3969/j.issn.1005-202X.2013.05.021]
[3]苑旺,梁媛媛,崔黎丽,等.正极性聚丙烯驻极体对糖尿病大鼠皮肤结构的影响[J].中国医学物理学杂志,2015,32(06):835.[doi:doi:10.3969/j.issn.1005-202X.2015.06.016]
 [J].Chinese Journal of Medical Physics,2015,32(10):835.[doi:doi:10.3969/j.issn.1005-202X.2015.06.016]
[4]余丽玲,陈婷,金浩宇,等.基于支持向量机和自回归积分滑动平均模型组合的血糖值预测[J].中国医学物理学杂志,2016,33(4):381.[doi:10.3969/j.issn.1005-202X.2016.04.012]
 [J].Chinese Journal of Medical Physics,2016,33(10):381.[doi:10.3969/j.issn.1005-202X.2016.04.012]
[5]花琦琦,刘新凤,焦青,等.基于SQL Server的糖尿病信息管理与分析系统[J].中国医学物理学杂志,2016,33(11):1183.[doi:10.3969/j.issn.1005-202X.2016.11.020]
 [J].Chinese Journal of Medical Physics,2016,33(10):1183.[doi:10.3969/j.issn.1005-202X.2016.11.020]
[6]楚轶,冯品,张薇,等. 稳恒磁场刺激对糖尿病动脉粥样硬化大鼠血清和主动脉中VEGF、TGF-β1、TNF-α和IL-6表达的影响[J].中国医学物理学杂志,2017,34(10):1045.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.016]
 [J].Chinese Journal of Medical Physics,2017,34(10):1045.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.016]
[7]郭一冰,崔栋,薛雅卓,等. 糖尿病行为量表计算工具箱的研制[J].中国医学物理学杂志,2018,35(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.015]
 GUO Yibing,CUI Dong,XUE Yazhuo,et al. Development of diabetes behavioral scale calculation toolbox[J].Chinese Journal of Medical Physics,2018,35(10):195.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.015]
[8]张嘉阳,黄河,刘子怡,等. 基于Gabor滤波器的糖尿病视网膜新生血管检测[J].中国医学物理学杂志,2018,35(8):968.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.019]
 ZHANG Jiayang,HUANG He,LIU Ziyi,et al. Gabor filter-based detection of neovascularization due to diabetic retinopathy[J].Chinese Journal of Medical Physics,2018,35(10):968.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.019]
[9]张迪,陈真诚,梁永波,等. 协同训练算法在无创血糖检测中的应用[J].中国医学物理学杂志,2018,35(11):1295.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.011]
 ZHANG Di,CHEN Zhencheng,LIANG Yongbo,et al. Application of co-training algorithm in noninvasive blood glucose detection[J].Chinese Journal of Medical Physics,2018,35(10):1295.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.011]
[10]钟婷婷,张迪,陈真诚,等. 基于BP神经网络的胰岛素评价预测模型[J].中国医学物理学杂志,2018,35(11):1318.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.015]
 ZHONG Tingting,ZHANG Di,CHEN Zhencheng,et al. Insulin evaluation and prediction model based on back-propagation neural network[J].Chinese Journal of Medical Physics,2018,35(10):1318.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.015]
[11]陈真诚,杜莹,邹春林,等. 基于K-Nearest Neighbor和神经网络的糖尿病分类研究[J].中国医学物理学杂志,2018,35(10):1220.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]
 CHEN Zhencheng,DU Ying,ZOU Chunlin,et al. Classification of diabetes based on K-Nearest Neighbor and neural network[J].Chinese Journal of Medical Physics,2018,35(10):1220.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]

备注/Memo

备注/Memo:
【收稿日期】2020-04-11 【基金项目】国家基金委重大仪器研制项目(61627807);国家自然科学基金(1873913);广西自然科学基金(2018GXNSFDA281044);广西创新研究团队项目(2017GXNSFGA198005) 【作者简介】陈真诚,教授,研究方向:生物传感与智能仪器,E-mail: chenzhcheng@163.com
更新日期/Last Update: 2020-10-29