[1]巩稼民,马豆豆,蒋杰伟,等.基于深度学习的慢性萎缩性胃炎诊断[J].中国医学物理学杂志,2020,37(5):649-655.[doi:10.3969/j.issn.1005-202X.2020.05.023]
 GONG Jiamin,MA Doudou,JIANG Jiewei,et al.Diagnosis of chronic atrophic gastritis based on deep learning[J].Chinese Journal of Medical Physics,2020,37(5):649-655.[doi:10.3969/j.issn.1005-202X.2020.05.023]
点击复制

基于深度学习的慢性萎缩性胃炎诊断()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第5期
页码:
649-655
栏目:
医学影像物理
出版日期:
2020-05-25

文章信息/Info

Title:
Diagnosis of chronic atrophic gastritis based on deep learning
文章编号:
1005-202X(2020)05-0649-07
作者:
巩稼民1马豆豆1蒋杰伟1张雅琼2裴梦杰3
1. 西安邮电大学电子工程学院,陕西西安710121;2. 山西医科大学附属山西省人民医院消化科,山西太原030012;3. 西安邮电 大学计算机学院,陕西西安710121
Author(s):
GONG Jiamin1 MA Doudou1 JIANG Jiewei1 ZHANG Yaqiong2 PEI Mengjie3
1. School of Electronic Engineering, Xian University of Posts and Telecommunications, Xian 710121, China 2. Department of Gastroenterology, Shanxi Provincial Peoples Hospital of Shanxi Medical University, Taiyuan 030012, China 3. School of Computer Science & Technology, Xian University of Posts and Telecommunications, Xian 710121, China
关键词:
慢性萎缩性胃炎深度学习Squeeze_and_ExcitaionApriori算法
Keywords:
chronic atrophic gastritis deep learning Squeeze_and_ExcitaionApriori algorithm
分类号:
R318;R573.32
DOI:
10.3969/j.issn.1005-202X.2020.05.023
文献标志码:
A
摘要:
慢性萎缩性胃炎是一种常见的胃病,如果得不到及时治疗,有可能发展成胃癌。然而,胃镜检查在萎缩性胃炎检查 中的敏感性仅为约42%,且活检受许多因素的影响。因此,使用卷积神经网络有助于提高诊断慢性萎缩性胃炎的准确性。 首先采用INPAINT_TELEA 算法对胃窦图像进行预处理,去除图像中的水印,对残差网络进行改进并嵌入 Squeeze_and_Excitaion模块以筛查慢性萎缩性胃炎,改进后的网络(SR-CAGnet)通过建立短路机制以及采用特征重标定 策略提高图像的分类效果。结果表明:与Alexnet和改进的ResNet网络进行对比,SR-CAGnet对慢性萎缩性胃炎的检出 率为87.92%,算法识别效果良好。通过使用Apriori算法并分析,得到萎缩性胃炎与胃镜检查下其他症状的关系,以辅助 医生的诊断。最后使用CAM热图验证模型的有效性。
Abstract:
Chronic atrophic gastritis is a common stomach disease, and it may develop into gastric cancer if without timely treatment. However, the sensitivity of gastroscopy in the examination of atrophic gastritis is only about 42%, and the biopsy is affected by many factors. Therefore, convolutional neural network is used to improve the diagnosis accuracy of chronic atrophic gastritis. INPAINT_TELEA algorithm is firstly used to preprocess the image of the gastric antrum for removing the watermarks in the image, and then residual network is improved and embed into Squeeze_and_Excitation module to realize the diagnosis of chronic atrophic gastritis. Finally, the improved network (SR-CAGnet) is applied to enhance the classification effect of images by establishing a short circuit mechanism and adopting a feature recalibration strategy. The results show that the detection rate of chronic atrophic gastritis by SR-CAGnet reaches 87.92% as compared with Alexnet and improved ResNet, which indicates the proposed algorithm has a good performance on recognition. Through the analysis by Apriori algorithm, the relationship between atrophic gastritis and other symptoms detected by gastroscopy is obtained, thus assisting doctors diagnosis. Finally, the validity of the model is verified using CAM heat map.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(5):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(5):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(5):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(5):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(5):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(5):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(5):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(5):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(5):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(5):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]

备注/Memo

备注/Memo:
【收稿日期】2019-12-19 【基金项目】国家重点研发计划(2018YFC0116500);中央高校基本科 研业务费专项资金资助项目(JB181002) 【作者简介】巩稼民,教授,主要从事光通信研究、图像处理,E-mail: gjm@xupt.edu.cn;马豆豆,研究生,主要从事深度学习医疗 影像处理,E-mail: mdd615912588@163.com 【通信作者】蒋杰伟,博士,主要从事深度学习医疗影像处理,E-mail: jiangjw924@126.com
更新日期/Last Update: 2020-06-03