[1]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195-204.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(2):195-204.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
点击复制

应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第2期
页码:
195-204
栏目:
医学影像物理
出版日期:
2020-02-25

文章信息/Info

Title:
Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network
文章编号:
1005-202X(2020)02-0195-10
作者:
温佳圆1林国钰1张逸文1周志涛2曹蕾1冯琴昌3
1.南方医科大学生物医学工程学院, 广东 广州 510515; 2.南方医科大学中心实验室电镜室, 广东 广州 510515; 3.广东省医疗器械研究所, 广东 广州 510500
Author(s):
WEN Jiayuan1 LIN Guoyu1 ZHANG Yiwen1 ZHOU Zhitao2 CAO Lei1 FENG Qinchang3
1. School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; 2. Electron Microscope Room, Central Laboratory, Southern Medical University, Guangzhou 510515, China; 3. Guangdong Institute of Medical Instruments, Guangzhou 510500, China
关键词:
深度学习DeepLab肾小球滤过膜超微病理图像语义分割
Keywords:
Keywords: deep learning DeepLab glomerular filtration membrane ultrastructural pathological image semantic segmentation
分类号:
R36;TP391.5
DOI:
DOI:10.3969/j.issn.1005-202X.2020.02.012
文献标志码:
A
摘要:
肾小球滤过膜包含内皮细胞、肾小球基底膜和足细胞3层超微结构,其形态改变是诊断肾小球疾病的重要指标之一。准确的滤过膜语义分割有助于病理医生识别和判断滤过膜细微的病理改变,为相关的病理诊断提供帮助。由于肾小球滤过膜的超微病理图像不仅结构复杂而且灰度分辨率很低,传统的分割算法均只能对其中形态最简单的基底膜部分进行分割,分割精度也难以保证。本文提出基于深度学习网络DeepLab-v3的肾小球滤过膜自动语义分割算法,应用空洞卷积扩大感受野,控制图像的特征分辨率,再通过空洞空间金字塔池化来获得多尺度的图像信息,最终将肾小球滤过膜的3个组成部分同时分割出来,并均能达到较好的分割效果。本文通过对重要参数进行实验探究,使得平均分割准确度达到0.776,是目前效果相对较好的模型。
Abstract:
Abstract: The glomerular filtration membrane contains 3 layers of ultrastructures, namely endothelial cells, glomerular basement membrane and podocytes. The morphological change of glomerular filtration membrane is one of the important indicators for the diagnosis of glomerular diseases. The accurate semantic segmentation of filtration membrane helps pathologists identify and determine the subtle pathological changes in filtration membrane so as to provide reference in the related pathological diagnosis. Due to the complicated structure and low gray-scale resolution of the ultrastructural pathology image of glomerular filtration membrane, the traditional segmentation algorithms can only segment the basement membrane with the simplest morphology, and it is difficult to guarantee the segmentation accuracy. Herein an automatic semantic segmentation algorithm based on deep learning network DeepLab-v3 for glomerular filtration membrane is proposed. Atrous convolution is used to expand field-of-views and control the feature resolution of the image; and then multi-scale image information is obtained through atrous spatial pyramid pooling; and finally, the 3 components of glomerular filtration membrane are simultaneously segmented, and all can achieve a favorable segmentation effect. Through the experimental exploration on important parameters, the average segmentation accuracy can reach 0.776, and a relatively good model at present is obtained in the study.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(2):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(2):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(2):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(2):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(2):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(2):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(2):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(2):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(2):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[10]薛湛琦,王远军.基于深度学习的多模态医学图像融合方法研究进展[J].中国医学物理学杂志,2020,37(5):579.[doi:10.3969/j.issn.1005-202X.2020.05.009]
 XUE Zhanqi,WANG Yuanjun.Advances in multimodal medical image fusion method based on deep learning[J].Chinese Journal of Medical Physics,2020,37(2):579.[doi:10.3969/j.issn.1005-202X.2020.05.009]

备注/Memo

备注/Memo:
【收稿日期】2019-09-21 【基金项目】广州市科技计划项目产学研协同创新重大专项(2016040- 20144);南方医科大学大学生创新创业训练项目(201812121012) 【作者简介】温佳圆,E-mail: 1538099790@qq.com 【通信作者】冯琴昌,高级工程师,研究方向:医疗器械新技术新产品研发及临床应用,E-mail: fqc8888@126.com
更新日期/Last Update: 2020-03-03