[1]田娟,朱姝婧,陆强,等.基于BP神经网络预测儿童甲状腺疾病的模型研究[J].中国医学物理学杂志,2020,37(10):1340-1344.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.022]
 TIAN Juan,ZHU Shujing,LU Qiang,et al.Prediction model of pediatric thyroid disease based on back-propagation neural network[J].Chinese Journal of Medical Physics,2020,37(10):1340-1344.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.022]
点击复制

基于BP神经网络预测儿童甲状腺疾病的模型研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第10期
页码:
1340-1344
栏目:
医学人工智能
出版日期:
2020-10-29

文章信息/Info

Title:
Prediction model of pediatric thyroid disease based on back-propagation neural network
文章编号:
1005-202X(2020)10-1340-05
作者:
田娟1朱姝婧2陆强1李坤1张西学1
1.山东第一医科大学医学信息工程学院, 山东 泰安 271016; 2.泰安市疾病预防控制中心检验科, 山东 泰安 271016
Author(s):
TIAN Juan1 ZHU Shujing2 LU Qiang1 LI Kun1 ZHANG Xixue1
1. School of Medical Information Engineering, Shandong First Medical University, Taian 271016, China 2. Department of Laboratory, Taian Center for Diseases Prevention and Control, Taian 271016, China
关键词:
儿童甲状腺疾病BP神经网络疾病预测分类正确率
Keywords:
Keywords: pediatric thyroid disease back-propagation neural network disease prediction classification accuracy
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2020.10.022
文献标志码:
A
摘要:
目的:构建儿童甲状腺疾病的预测模型。方法:根据某市疾病预防控制中心2013年~2016年采集的1 400名8~11岁儿童的体检数据及临床初步诊断结果作为研究数据,随机抽取其中的1 000名儿童作为训练样本,剩余的400名儿童作为测试样本,利用 MATLAB R2018b软件编程实现三层BP神经网络模型。结果:当选择log&log组合作为隐含层和输出层的传递函数,隐含层节点数目选择8时,模型的分类正确率达到91.43%。结论:BP神经网络应用于儿童甲状腺疾病的预测,可以为疾病的防治工作提供理论依据。
Abstract:
Abstract: Objective To construct a prediction model of thyroid disease in pediatric patients. Methods The physical examination data and preliminary clinical diagnoses of 1 400 children aged 8-11 years were collected from 2013 to 2016 in a Center for Disease Prevention and Control. One thousand out of 1 400 children were randomly selected as training samples, and the remaining 400 were used as test samples. A three-layer back-propagation neural network model was constructed by MATLAB R2018b software. Results The classification accuracy of the model reached 91.43% when the combination of log&log was selected as the transfer function of the hidden layer and the output layer, with 8 nodes in the hidden layer. Conclusion Back-propagation neural network can be applied to the prediction of thyroid diseases in children, and provide a theoretical basis for the prevention and treatment of diseases.

相似文献/References:

[1]钟婷婷,张迪,陈真诚,等. 基于BP神经网络的胰岛素评价预测模型[J].中国医学物理学杂志,2018,35(11):1318.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.015]
 ZHONG Tingting,ZHANG Di,CHEN Zhencheng,et al. Insulin evaluation and prediction model based on back-propagation neural network[J].Chinese Journal of Medical Physics,2018,35(10):1318.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.015]
[2]陈天麟,戴佺民,程光,等.基于肌电信号的膝关节跨越障碍角度预测方法[J].中国医学物理学杂志,2020,37(10):1293.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.014]
 CHEN Tianlin,DAI Quanmin,CHENG Guang,et al.Prediction of knee joint angle when crossing obstacles based on myoelectric signals[J].Chinese Journal of Medical Physics,2020,37(10):1293.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.014]
[3]张悦,陈真诚,梁永波,等.基于光电容积脉搏波的心房颤动识别方法[J].中国医学物理学杂志,2020,37(11):1416.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.014]
 ZHANG Yue,CHEN Zhencheng,LIANG Yongbo,et al.Atrial fibrillation identification based on photoplethysmography[J].Chinese Journal of Medical Physics,2020,37(10):1416.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.014]
[4]顾家军,叶继伦,崔钰涵,等.BP网络在麻醉深度监测算法上的应用[J].中国医学物理学杂志,2021,38(8):985.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.013]
 GU Jiajun,YE Jilun,CUI Yuhan,et al.Application of back-propagation network in algorithm for monitoring depth of anesthesia[J].Chinese Journal of Medical Physics,2021,38(10):985.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.013]
[5]果爽,程伟,刘鑫鑫,等.基于BP神经网络的医疗卫生服务质量满意度研究[J].中国医学物理学杂志,2023,40(6):788.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.019]
 GUO Shuang,CHENG Wei,LIU Xinxin,et al.Evaluation of satisfaction with medical and health services using BP neural network[J].Chinese Journal of Medical Physics,2023,40(10):788.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.019]

备注/Memo

备注/Memo:
【收稿日期】2020-04-11 【基金项目】泰安市科技发展计划(201730338) 【作者简介】田娟,讲师,硕士,研究方向:智能控制和模式识别,E-mail: jtian@sdfmu.edu.cn
更新日期/Last Update: 2020-10-29