[1]沈延延,冯汉升.基于神经网络的双X射线影像2D-3D配准算法[J].中国医学物理学杂志,2020,37(3):293-298.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.007]
SHEN Yanyan,FENG Hansheng.2D-3D double X-ray image registration method based on neural network[J].Chinese Journal of Medical Physics,2020,37(3):293-298.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.007]
点击复制
基于神经网络的双X射线影像2D-3D配准算法()
《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]
- 卷:
-
37
- 期数:
-
2020年第3期
- 页码:
-
293-298
- 栏目:
-
医学影像物理
- 出版日期:
-
2020-03-25
文章信息/Info
- Title:
-
2D-3D double X-ray image registration method based on neural network
- 文章编号:
-
1005-202X(2020)03-0293-06
- 作者:
-
沈延延1; 冯汉升2
-
1.安徽大学电气工程与自动化学院, 安徽 合肥 230601; 2.中国科学院等离子体物理研究所, 安徽 合肥 230031
- Author(s):
-
SHEN Yanyan1; FENG Hansheng2
-
1. School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China; 2. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
-
- 关键词:
-
双X射线影像; 2D-3D配准; 卷积神经网络; 几何分解
- Keywords:
-
Keywords: double X-ray image; 2D-3D registration; convolutional neural network; geometric decomposition
- 分类号:
-
R318
- DOI:
-
DOI:10.3969/j.issn.1005-202X.2020.03.007
- 文献标志码:
-
A
- 摘要:
-
针对基于迭代优化的传统2D-3D医学图像配准算法运行速度慢,难以达到实时配准的要求,本研究提出一种实时2D-3D配准方法。通过将空间刚体变换参数分解到两个平面上,将2D-3D配准简化为两个步骤,包含2D-2D近似刚体配准与单参数2D-3D刚体配准。同时利用深度卷积神经网络拟合患者X射线影像残差与其对应姿态差异间的非线性映射关系,从X-DRR图像对的残差回归出空间刚体变换参数。经由头颅CT数据训练后的网络,在0.04 s内完成了高精度的双X射线配准。本研究提出的配准方法满足了放疗过程中进行实时2D-3D配准工作的要求。
- Abstract:
-
Abstract: Based on the situation that the traditional 2D-3D medical image registration algorithm based on iterative optimization can not realize real-time registration due to slow running speed, a real-time 2D-3D registration method is proposed. By decomposing spatial rigid transformation parameters into two planes, 2D-3D registration is simplified into two steps, including 2D-2D approximate rigid registration and single-parameter 2D-3D grid registration. Meanwhile, deep convolutional neural network is used to fit the nonlinear mapping between X-ray images residual and its corresponding postural difference, and the space rigid transformation parameters are regressed from the residual of the X-DRR image pair. The network trained by head CT data can complete the high-precision double X-ray registration within 0.04 s. The proposed registration method can satisfy the requirements of real-time 2D-3D registration during radiotherapy.
备注/Memo
- 备注/Memo:
-
【收稿日期】2019-10-21
【基金项目】中国科学院合肥物质科学研究院“十三五”规划重点支持项目(kp-2017-24)
【作者简介】沈延延,硕士研究生,从事医学图像处理研究,E-mail: yanyan_sh@foxmail.com
【通信作者】冯汉升,主要从事质子治疗系统研究,E-mail: hsfeng@ipp.ac.cn
更新日期/Last Update:
2020-04-02