相似文献/References:
[1]武会江,黄启俊,常胜,等.基于多项式参数拟合和支持向量机的心肌梗死识别算法[J].中国医学物理学杂志,2017,34(7):736.[doi:10.3969/j.issn.1005-202X.2017.07.017]
[J].Chinese Journal of Medical Physics,2017,34(3):736.[doi:10.3969/j.issn.1005-202X.2017.07.017]
[2]陆宏伟,钟高艳,龙芋帆,等. 全数据库评估概率密度函数法利用R-R间期检测房颤精度[J].中国医学物理学杂志,2018,35(3):333.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.016]
LU Hongwei,ZHONG Gaoyan,LONG Yufan,et al. Evaluation of the precision of probability density function method using R-R intervals for detecting atrial fibrillation from the whole MIT-BIH arrhythmia database[J].Chinese Journal of Medical Physics,2018,35(3):333.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.016]
[3]王凯,杨枢. 基于自适应学习的心律失常心拍分类方法[J].中国医学物理学杂志,2019,36(1):92.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.018]
WANG Kai,YANG Shu. Adaptive learning-based method for classification of arrhythmic heartbeats[J].Chinese Journal of Medical Physics,2019,36(3):92.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.018]
[4]梁伟玲,吴超,林建斌,等. 基于Arduino的无线心电信号采集系统设计与实现[J].中国医学物理学杂志,2019,36(6):715.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.019]
LIANG Weiling,WU Chao,LIN Jianbin,et al. Design and implementation of wireless ECG signal acquisition system based on Arduino[J].Chinese Journal of Medical Physics,2019,36(3):715.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.019]
[5]文翠,赵新军,张震洪,等.冠心病患者心电图ST段改变与多排螺旋CT冠状动脉成像的关系分析[J].中国医学物理学杂志,2020,37(8):1035.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.018]
WEN Cui,ZHAO Xinjun,ZHANG Zhenhong,et al.Relationships between ECG ST-segment changes and multi-slice spiral CT coronary angiography in patients with coronary heart disease[J].Chinese Journal of Medical Physics,2020,37(3):1035.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.018]
[6]胡丹琴,蔡文杰.QRS复合波检测技术综述[J].中国医学物理学杂志,2020,37(9):1208.[doi:10.3969/j.issn.1005-202X.2020.09.024]
HU Danqin,CAI Wenjie.Review on technologies for QRS complex detection[J].Chinese Journal of Medical Physics,2020,37(3):1208.[doi:10.3969/j.issn.1005-202X.2020.09.024]
[7]林卓琛,张晋昕.基于非参数相关系数的心肌病自动诊断[J].中国医学物理学杂志,2021,38(1):80.[doi:10.3969/j.issn.1005-202X.2021.01.014]
LIN Zhuochen,ZHANG Jinxin.Automatic diagnosis of cardiomyopathy based on nonparametric correlation coefficient[J].Chinese Journal of Medical Physics,2021,38(3):80.[doi:10.3969/j.issn.1005-202X.2021.01.014]
[8]王新峰,漆梦玲,徐洪智.基于心电图的心肌梗死识别分类研究[J].中国医学物理学杂志,2022,39(8):992.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.013]
WANG Xinfeng,QI Mengling,et al.ECG-based identification and classification of myocardial infarction[J].Chinese Journal of Medical Physics,2022,39(3):992.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.013]
[9]徐柏林,蔡文杰,杨明菲,等.基于改进U-Net模型的心电波形分割[J].中国医学物理学杂志,2022,39(10):1274.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.016]
XU Bolin,CAI Wenjie,YANG Mingfei,et al.ECG waveform segmentation based on improved U-Net model[J].Chinese Journal of Medical Physics,2022,39(3):1274.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.016]
[10]刘建华,吕建峰,蔡金丹.基于卷积神经网络和长短时记忆网络的心肌梗死检测[J].中国医学物理学杂志,2022,39(11):1448.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.020]
LIU Jianhua,L?Jianfeng,CAI Jindan.Screening for myocardial infarction using convolutional neural network and long short-term memory network[J].Chinese Journal of Medical Physics,2022,39(3):1448.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.020]
[11]王凯,杨枢,李超. 一种基于ECG的多层共轭对称Hadamard特征变换的房颤异常信号分类方法[J].中国医学物理学杂志,2019,36(9):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]
WANG Kai,YANG Shu,LI Chao. ECG-based multi-level conjugate symmetric Hadamard feature transformation for classification of abnormal signals of atrial fibrillation[J].Chinese Journal of Medical Physics,2019,36(3):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]