[1]蔚文婧,王寻,张鹏远,等.一种基于多层感知器的房颤心电图检测方法[J].中国医学物理学杂志,2020,37(3):332-336.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.015]
 WEI Wenjing,WANG Xun,ZHANG Pengyuan,et al.Multilayer perceptron-based method for atrial fibrillation ECG detection[J].Chinese Journal of Medical Physics,2020,37(3):332-336.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.015]
点击复制

一种基于多层感知器的房颤心电图检测方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第3期
页码:
332-336
栏目:
医学信号处理与医学仪器
出版日期:
2020-03-25

文章信息/Info

Title:
Multilayer perceptron-based method for atrial fibrillation ECG detection
文章编号:
1005-202X(2020)03-0332-05
作者:
蔚文婧1王寻1张鹏远1颜永红123
1.中国科学院声学研究所语言声学与内容理解重点实验室, 北京 100190; 2.中国科学院新疆理化技术研究所新疆民族语音语言信息处理实验室, 新疆 乌鲁木齐 830011; 3.中国科学院大学, 北京 100049
Author(s):
WEI Wenjing1 WANG Xun1 ZHANG Pengyuan1 YAN Yonghong1 2 3
1. Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; 2. Xinjiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
房颤心电图多层感知器R波检测深层置信网络
Keywords:
Keywords: atrial fibrillation electrocardiogram multilayer perceptron R-wave detection deep belief network
分类号:
R318;TP183
DOI:
DOI:10.3969/j.issn.1005-202X.2020.03.015
文献标志码:
A
摘要:
目的:提出一种基于多层感知器(MLP)的新型房颤识别算法。方法:首先设计一种新型自适应的R波阈值检测算法,然后以R波位置和幅度为特征,MLP为分类器进行正常/房颤心电图识别。MLP的网络参数采用深层置信网络预训练算法进行初始化,最后用误差反向传播算法对MLP网络权重进行调整。结果:在单通道心电图数据集上对正常、房颤心电信号进行分类,本研究方法的灵敏度达96.00%,特异性为84.18%,平均识别率为90.09%。结论:这种基于MLP的心电识别算法准确率高、计算复杂度较低,可为房颤的智能诊断提供一种新方法。
Abstract:
Abstract: Objective To propose an atrial fibrillation (AF) recognition method based on multilayer perceptron (MLP). Methods Firstly, a novel R-wave detection algorithm based on adaptive threshold was designed, and then with the location and amplitude of R-wave as features, MLP was used as classifier to recognize the normal/AF electrocardiogram (ECG). The network parameters of MLP were initialized by deep belief network pre-training algorithm. Finally, the weights of MLP network were tuned by error back-propagation (BP) algorithm. Results The sensitivity, specificity and average recognition rate of the proposed method for the classification of normal and AF ECG signals on a single-channel ECG database were 96.00%, 84.18% and 90.09%, respectively. Conclusion The proposed algorithm based on MLP which has high accuracy and lower computation complexity can be a new method for the intelligent diagnosis of AF.

相似文献/References:

[1]武会江,黄启俊,常胜,等.基于多项式参数拟合和支持向量机的心肌梗死识别算法[J].中国医学物理学杂志,2017,34(7):736.[doi:10.3969/j.issn.1005-202X.2017.07.017]
 [J].Chinese Journal of Medical Physics,2017,34(3):736.[doi:10.3969/j.issn.1005-202X.2017.07.017]
[2]陆宏伟,钟高艳,龙芋帆,等. 全数据库评估概率密度函数法利用R-R间期检测房颤精度[J].中国医学物理学杂志,2018,35(3):333.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.016]
 LU Hongwei,ZHONG Gaoyan,LONG Yufan,et al. Evaluation of the precision of probability density function method using R-R intervals for detecting atrial fibrillation from the whole MIT-BIH arrhythmia database[J].Chinese Journal of Medical Physics,2018,35(3):333.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.016]
[3]王凯,杨枢. 基于自适应学习的心律失常心拍分类方法[J].中国医学物理学杂志,2019,36(1):92.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.018]
 WANG Kai,YANG Shu. Adaptive learning-based method for classification of arrhythmic heartbeats[J].Chinese Journal of Medical Physics,2019,36(3):92.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.018]
[4]梁伟玲,吴超,林建斌,等. 基于Arduino的无线心电信号采集系统设计与实现[J].中国医学物理学杂志,2019,36(6):715.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.019]
 LIANG Weiling,WU Chao,LIN Jianbin,et al. Design and implementation of wireless ECG signal acquisition system based on Arduino[J].Chinese Journal of Medical Physics,2019,36(3):715.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.019]
[5]文翠,赵新军,张震洪,等.冠心病患者心电图ST段改变与多排螺旋CT冠状动脉成像的关系分析[J].中国医学物理学杂志,2020,37(8):1035.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.018]
 WEN Cui,ZHAO Xinjun,ZHANG Zhenhong,et al.Relationships between ECG ST-segment changes and multi-slice spiral CT coronary angiography in patients with coronary heart disease[J].Chinese Journal of Medical Physics,2020,37(3):1035.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.018]
[6]胡丹琴,蔡文杰.QRS复合波检测技术综述[J].中国医学物理学杂志,2020,37(9):1208.[doi:10.3969/j.issn.1005-202X.2020.09.024]
 HU Danqin,CAI Wenjie.Review on technologies for QRS complex detection[J].Chinese Journal of Medical Physics,2020,37(3):1208.[doi:10.3969/j.issn.1005-202X.2020.09.024]
[7]林卓琛,张晋昕.基于非参数相关系数的心肌病自动诊断[J].中国医学物理学杂志,2021,38(1):80.[doi:10.3969/j.issn.1005-202X.2021.01.014]
 LIN Zhuochen,ZHANG Jinxin.Automatic diagnosis of cardiomyopathy based on nonparametric correlation coefficient[J].Chinese Journal of Medical Physics,2021,38(3):80.[doi:10.3969/j.issn.1005-202X.2021.01.014]
[8]王新峰,漆梦玲,徐洪智.基于心电图的心肌梗死识别分类研究[J].中国医学物理学杂志,2022,39(8):992.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.013]
 WANG Xinfeng,QI Mengling,et al.ECG-based identification and classification of myocardial infarction[J].Chinese Journal of Medical Physics,2022,39(3):992.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.013]
[9]徐柏林,蔡文杰,杨明菲,等.基于改进U-Net模型的心电波形分割[J].中国医学物理学杂志,2022,39(10):1274.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.016]
 XU Bolin,CAI Wenjie,YANG Mingfei,et al.ECG waveform segmentation based on improved U-Net model[J].Chinese Journal of Medical Physics,2022,39(3):1274.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.016]
[10]刘建华,吕建峰,蔡金丹.基于卷积神经网络和长短时记忆网络的心肌梗死检测[J].中国医学物理学杂志,2022,39(11):1448.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.020]
 LIU Jianhua,L?Jianfeng,CAI Jindan.Screening for myocardial infarction using convolutional neural network and long short-term memory network[J].Chinese Journal of Medical Physics,2022,39(3):1448.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.020]
[11]王凯,杨枢,李超. 一种基于ECG的多层共轭对称Hadamard特征变换的房颤异常信号分类方法[J].中国医学物理学杂志,2019,36(9):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]
 WANG Kai,YANG Shu,LI Chao. ECG-based multi-level conjugate symmetric Hadamard feature transformation for classification of abnormal signals of atrial fibrillation[J].Chinese Journal of Medical Physics,2019,36(3):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]

备注/Memo

备注/Memo:
【收稿日期】2019-10-03 【基金项目】国家自然科学基金(11590770-4, 31600868, 11774380) 【作者简介】蔚文婧,博士后,研究方向:医学信号智能诊断,E-mail: weiwenjing@hccl.ioa.ac.cn 【通信作者】张鹏远,博士,研究员,研究方向:语音识别、人工智能,E-mail: zhangpengyuan@hccl.ioa.ac.cn
更新日期/Last Update: 2020-04-02