[1]李刚,韩德鹏,刘强伟,等.基于典型相关稀疏自编码器的精神分裂症的分类[J].中国医学物理学杂志,2020,37(3):391-396.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.025]
 LI Gang,HAN Depeng,LIU Qiangwei,et al.Classification of schizophrenia based on deep canonically correlated sparse autoencoder[J].Chinese Journal of Medical Physics,2020,37(3):391-396.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.025]
点击复制

基于典型相关稀疏自编码器的精神分裂症的分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第3期
页码:
391-396
栏目:
其他(激光医学等)
出版日期:
2020-03-25

文章信息/Info

Title:
Classification of schizophrenia based on deep canonically correlated sparse autoencoder
文章编号:
1005-202X(2020)03-0391-06
作者:
李刚韩德鹏刘强伟王超李莹
长安大学电子与控制工程学院, 陕西 西安 710064
Author(s):
LI Gang HAN Depeng LIU Qiangwei WANG Chao LI Ying
School of Electronic Control, Chang’an University, Xi’an 710064, China
关键词:
精神分裂症单核苷酸多态性功能性核磁共振成像典型相关稀疏自编码器
Keywords:
Keywords: schizophrenia single nucleotide polymorphism functional magnetic resonance imaging deep canonically correlated sparse autoencoder
分类号:
R318;R749.3
DOI:
DOI:10.3969/j.issn.1005-202X.2020.03.025
文献标志码:
A
摘要:
通过结合大脑核磁共振成像和基因组信息进行全面系统的分析,影像遗传学已被广泛用于帮助诊断和治疗精神疾病(例如精神分裂症)。本文采用单核苷酸多态性数据和功能性磁共振成像数据联合分析,提出深度典型相关稀疏自编码器模型,探索两类数据之间的非线性关联并进行降维,对精神分裂症患者和健康对照进行分类。最后,实验结果表明,使用深度典型相关稀疏自编码器模型比其他传统模型具有更高的分类准确性。
Abstract:
Abstract: Imaging genetics has been widely used to aid the diagnosis and treatment of mental illnesses (e.g. schizophrenia), by combining magnetic resonance imaging of the brain and genomic information for a comprehensive and systematic analysis. Herein the joint analysis of single nucleotide polymorphism data and functional magnetic resonance imaging data is carried out for the comprehensive study on schizophrenia. Deep canonically correlated sparse autoencoder is proposed to explore the nonlinear relationships between two types of data and reduce dimensions, and then classify schizophrenia patients from healthy controls. The experimental results reveal that compared with other conventional models, deep canonically correlated sparse autoencoder model can achieve a higher classification accuracy.

相似文献/References:

[1]杨勇哲,黄飚,冀泓锞,等.精神分裂症的磁共振影像学研究进展[J].中国医学物理学杂志,2016,33(8):848.[doi:10.3969/j.issn.1005-202X.2016.08.019]
 [J].Chinese Journal of Medical Physics,2016,33(3):848.[doi:10.3969/j.issn.1005-202X.2016.08.019]
[2]张越,杨勇哲,吴逢春,等.基于多模态磁共振影像的精神分裂症患者多特征分类研究[J].中国医学物理学杂志,2017,34(1):99.[doi:10.3969/j.issn.1005-202X.2017.01.020]
 [J].Chinese Journal of Medical Physics,2017,34(3):99.[doi:10.3969/j.issn.1005-202X.2017.01.020]
[3]张娜,王瑜,周文,等. 正则化多任务学习在精神分裂症核磁共振成像图像分类中的应用[J].中国医学物理学杂志,2018,35(7):790.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.010]
 ZHANG Na,WANG Yu,ZHOU Wen,et al. Application of regularized multi-task learning in schizophrenia MRI data classification[J].Chinese Journal of Medical Physics,2018,35(3):790.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.010]
[4]李嘉慧,刘建鹏,潘智林,等.精神分裂症患者认知功能损伤的神经生物学基础和电生理表现[J].中国医学物理学杂志,2020,37(1):115.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.021]
 LI Jiahui,LIU Jianpeng,et al.Neurobiological bases and electrophysiological manifestations of cognitive impairments in patients with schizophrenia[J].Chinese Journal of Medical Physics,2020,37(3):115.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.021]
[5]徐信毅,李斌,朱耿,等.基于时空图卷积神经网络的精神分裂症识别[J].中国医学物理学杂志,2024,41(2):227.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.016]
 XU Xinyi,LI Bin,ZHU Geng,et al.Spatial-temporal graph convolutional neural network for schizophrenia recognition[J].Chinese Journal of Medical Physics,2024,41(3):227.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.016]
[6]任秀芳,罗捷.基于图论的精神分裂症患者静息态功能脑网络分析[J].中国医学物理学杂志,2024,41(7):821.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.006]
 REN Xiufang,LUO Jie.Analysis of resting-state functional brain network in schizophrenia patients based on graph theory[J].Chinese Journal of Medical Physics,2024,41(3):821.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.006]
[7]谢忠翔,武杰,项华中.基于稀疏表示变量选择方法的影像遗传学数据分析[J].中国医学物理学杂志,2020,37(5):584.[doi:10.3969/j.issn.1005-202X.2020.05.010]
 XIE Zhongxiang,WU Jie,XIANG Huazhong.Sparse representation-based variable selection algorithm for analysis of imaging genetics data[J].Chinese Journal of Medical Physics,2020,37(3):584.[doi:10.3969/j.issn.1005-202X.2020.05.010]

备注/Memo

备注/Memo:
【收稿日期】2019-10-18 【基金项目】长安大学研究生科研创新实践项目(300103002075) 【作者简介】李刚,副教授,工学博士,博士后,研究方向:模式识别、机器学习、多模态生物医学信息融合,E-mail: 15229296166@chd.edu.cn
更新日期/Last Update: 2020-04-02