[1]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103-1112.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(9):1103-1112.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
点击复制

 基于深度学习的心血管疾病风险预测模型()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
36卷
期数:
2019年第9期
页码:
1103-1112
栏目:
其他(激光医学等)
出版日期:
2019-09-25

文章信息/Info

Title:
 Deep learning-based model for risk prediction of cardiovascular diseases
文章编号:
1005-202X(2019)09-1103-10
作者:
 安莹1黄能军2杨荣3陈先来1
 1.中南大学信息安全与大数据学院, 湖南 长沙 410083; 2.中南大学计算机学院, 湖南 长沙 410083; 3.中南大学湘雅医院, 湖南 长沙 410078
Author(s):
 AN Ying1 HUANG Nengjun2 YANG Rong3 CHEN Xianlai1
 1. Information Security and Big Data Research Institute, Central South University, Changsha 410083, China; 2. School of Computer Science and Engineering, Central South University, Changsha 410083, China; 3. Xiangya Hospital, Central South University, Changsha 410078, China
关键词:
 心血管疾病风险预测电子病历深度学习
Keywords:
 Keywords: cardiovascular disease risk prediction electronic medical record deep learning
分类号:
R319;TP391.4
DOI:
DOI:10.3969/j.issn.1005-202X.2019.09.021
文献标志码:
A
摘要:
 心血管疾病的准确预测对其预防工作有着重大的意义,本文提出一种基于电子病历数据挖掘的模型研究心血管疾病的风险预测。该模型利用循环神经网络等技术对患者的历史电子病历数据进行表征学习,不仅能有效捕获电子病历数据中的时序特征,而且其特征工程无需人工干预。此外,在循环神经网络上嵌入的关注机制从每个患者的数据学到了一个上下文向量,该向量能有效增强深度模型的拟合能力和可解释性。为了进一步提高心血管疾病风险预测的准确性,该模型融合了多种类型的临床数据,包括诊断编码序列、实验室数据以及人口学统计数据。该模型利用多个子模块进行表征学习,不仅能充分考虑到数据之间的差异性,还能考虑到它们之间潜在的关联性,最终提高心血管疾病风险预测的性能。实验结果表明,在心血管疾病风险预测的性能方面,该模型相比最新的几种方法具有较高的召回率、F1值和AUC值,其分别可达0.814 9、0.737 8和0.837 5。
Abstract:
 Abstract: The accurate prediction of cardiovascular diseases (CVD) is of great significance for the prevention of CVD. Therefore, a novel model based on electronic medical records (EHR) and data mining is proposed to investigate the risk prediction of CVD. Recurrent neural network is adopted for the representation learning of EHR, which can effectively capture temporal information hidden in EHR and achieve feature engineering without any manual intervention. Meanwhile, a context vector which is obtained via attention mechanism embed in recurrent neural network model can improve the fitting performance as well as interpretability of the risk prediction model. To further improve the accuracy of the risk prediction of CVD, the model effectively combines various kinds of clinical data, including diagnostic coding sequence, laboratory data and demographic statistics. The model utilizes several modules for representation learning, which can take full consideration of not only the difference but also the correlation among these clinical data, thus improving the performance in the risk prediction of CVD. Experimental results show that the proposed model outperforms the latest methods in the risk prediction of CVD. The recall rate, F1-score and AUC of the proposed model can reach 0.814 9, 0.737 8 and 0.837 5, respectively.

相似文献/References:

[1]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(9):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[2]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(9):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[3]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(9):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[4]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(9):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[5]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(9):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[6]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[7]张先稳,李军,张西志,等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J].中国医学物理学杂志,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
 [J].Chinese Journal of Medical Physics,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
[8]胡健,李承军,徐利明,等. 床面倾斜对剂量验证通过率的影响[J].中国医学物理学杂志,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
 [J].Chinese Journal of Medical Physics,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
[9]陈亚正,肖明勇,孙春堂,等. 准直器角度对宫颈癌术后VMAT计划的影响[J].中国医学物理学杂志,2016,33(9):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
 [J].Chinese Journal of Medical Physics,2016,33(9):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
[10]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
[11]巫伟强,谭建平,王帅,等. 轴流式血泵无位置传感驱动控制系统设计[J].中国医学物理学杂志,2019,36(1):77.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.015]
 WU Weiqiang,TAN Jianping,WANG Shuai,et al. Design of sensorless drive control system for axial flow blood pump[J].Chinese Journal of Medical Physics,2019,36(9):77.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.015]
[12]陈倩蓉,梁永波,赵飞骏,等. 基于心电-脉搏波的心血管疾病识别研究[J].中国医学物理学杂志,2019,36(2):210.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
 CHEN Qianrong,LIANG Yongbo,ZHAO Feijun,et al. Cardiovascular disease recognition based on electrocardiogram data and pulse wave[J].Chinese Journal of Medical Physics,2019,36(9):210.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
[13]陈刚,叶继伦,张旭,等. 心音信号的特征识别方法[J].中国医学物理学杂志,2019,36(6):710.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.018]
 CHEN Gang,YE Jilun,ZHANG Xu,et al. Heart sound signal processing and feature recognition method[J].Chinese Journal of Medical Physics,2019,36(9):710.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.018]

备注/Memo

备注/Memo:
 【收稿日期】2019-04-11
【基金项目】国家重点研发计划(2016YFC0901705);湖南省自然科学基金(2018JJ2534);湖南省研究生创新项目(1053320170077);中南大学中央高校基本科研业务费专项(2017zzts721)
【作者简介】安莹,博士,副教授,主要研究方向:大数据分析、机器学习及其应用,E-mail: anying@csu.edu.cn
【通信作者】杨荣,主管护师,现从事临床护理工作,E-mail: cxlyr05-
76@163.com
更新日期/Last Update: 2019-09-24