相似文献/References:
[1]杨勇哲,黄飚,冀泓锞,等.精神分裂症的磁共振影像学研究进展[J].中国医学物理学杂志,2016,33(8):848.[doi:10.3969/j.issn.1005-202X.2016.08.019]
[J].Chinese Journal of Medical Physics,2016,33(1):848.[doi:10.3969/j.issn.1005-202X.2016.08.019]
[2]张越,杨勇哲,吴逢春,等.基于多模态磁共振影像的精神分裂症患者多特征分类研究[J].中国医学物理学杂志,2017,34(1):99.[doi:10.3969/j.issn.1005-202X.2017.01.020]
[J].Chinese Journal of Medical Physics,2017,34(1):99.[doi:10.3969/j.issn.1005-202X.2017.01.020]
[3]张娜,王瑜,周文,等. 正则化多任务学习在精神分裂症核磁共振成像图像分类中的应用[J].中国医学物理学杂志,2018,35(7):790.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.010]
ZHANG Na,WANG Yu,ZHOU Wen,et al. Application of regularized multi-task learning in schizophrenia MRI data classification[J].Chinese Journal of Medical Physics,2018,35(1):790.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.010]
[4]李刚,韩德鹏,刘强伟,等.基于典型相关稀疏自编码器的精神分裂症的分类[J].中国医学物理学杂志,2020,37(3):391.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.025]
LI Gang,HAN Depeng,LIU Qiangwei,et al.Classification of schizophrenia based on deep canonically correlated sparse autoencoder[J].Chinese Journal of Medical Physics,2020,37(1):391.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.025]
[5]谢忠翔,武杰,项华中.基于稀疏表示变量选择方法的影像遗传学数据分析[J].中国医学物理学杂志,2020,37(5):584.[doi:10.3969/j.issn.1005-202X.2020.05.010]
XIE Zhongxiang,WU Jie,XIANG Huazhong.Sparse representation-based variable selection algorithm for analysis of imaging genetics data[J].Chinese Journal of Medical Physics,2020,37(1):584.[doi:10.3969/j.issn.1005-202X.2020.05.010]
[6]徐信毅,李斌,朱耿,等.基于时空图卷积神经网络的精神分裂症识别[J].中国医学物理学杂志,2024,41(2):227.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.016]
XU Xinyi,LI Bin,ZHU Geng,et al.Spatial-temporal graph convolutional neural network for schizophrenia recognition[J].Chinese Journal of Medical Physics,2024,41(1):227.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.016]
[7]任秀芳,罗捷.基于图论的精神分裂症患者静息态功能脑网络分析[J].中国医学物理学杂志,2024,41(7):821.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.006]
REN Xiufang,LUO Jie.Analysis of resting-state functional brain network in schizophrenia patients based on graph theory[J].Chinese Journal of Medical Physics,2024,41(1):821.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.006]