相似文献/References:
[1]谷珊珊,张怀文,王运来.基于水平集稳健特征统计算法的脑肿瘤自动分割研究[J].中国医学物理学杂志,2016,33(1):63.[doi:10.3969/j.issn.1005-202X.2016.01.014]
[J].Chinese Journal of Medical Physics,2016,33(7):63.[doi:10.3969/j.issn.1005-202X.2016.01.014]
[2]王净巍,岳士弘.人体肺癌组织电导率与CT图像灰度相关性[J].中国医学物理学杂志,2016,33(6):599.[doi:10.3969/j.issn.1005-202X.2016.06.013]
[J].Chinese Journal of Medical Physics,2016,33(7):599.[doi:10.3969/j.issn.1005-202X.2016.06.013]
[3]牛军龙,秦现生,洪杰,等.基于CT图像重建人体膝关节3D骨骼优化模型[J].中国医学物理学杂志,2016,33(7):700.[doi:10.3969/j.issn.1005-202X.2016.07.012]
[J].Chinese Journal of Medical Physics,2016,33(7):700.[doi:10.3969/j.issn.1005-202X.2016.07.012]
[4]邓金城,刘常春,莫珍丽,等. 基于Hessian矩阵及余弦定理的肝门静脉血管检测[J].中国医学物理学杂志,2017,34(5):462.[doi:DOI:10.3969/j.issn.1005-202X.2017.05.006]
[5]张文莉,吕晓琪,谷宇,等. 基于肺部CT图像中肺实质分割的研究进展[J].中国医学物理学杂志,2017,34(9):902.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.009]
[J].Chinese Journal of Medical Physics,2017,34(7):902.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.009]
[6]高磊,段辉宏,周韡鼎,等. 基于CT影像的肺叶分割技术研究进展[J].中国医学物理学杂志,2019,36(10):1168.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.010]
GAO Lei,DUAN Huihong,ZHOU Weiding,et al. Progress on CT image-based lung lobe segmentation techniques[J].Chinese Journal of Medical Physics,2019,36(7):1168.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.010]
[7]张倩雯,陈明,秦玉芳,等.基于3D ResUnet网络的肺结节分割[J].中国医学物理学杂志,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
ZHANG Qianwen,CHEN Ming,QIN Yufang,et al.Lung nodule segmentation based on 3D ResUnet network[J].Chinese Journal of Medical Physics,2019,36(7):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
[8]徐艳,胡顺波,王基烽,等.一种基于Snake模型的脑部CT图像分割新算法[J].中国医学物理学杂志,2020,37(5):568.[doi:10.3969/j.issn.1005-202X.2020.05.007]
XU Yan,HU Shunbo,et al.A New Segmentation Algorithm Based on Snake Model for Brain CT Image[J].Chinese Journal of Medical Physics,2020,37(7):568.[doi:10.3969/j.issn.1005-202X.2020.05.007]
[9]曹宇,邢素霞,逄键梁,等.基于改进的VGG-16卷积神经网络的肺结节检测[J].中国医学物理学杂志,2020,37(7):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
CAO Yu,XING Suxia,PANG Jianliang,et al.Detection of pulmonary nodules based on improved VGG-16 convolution neural network[J].Chinese Journal of Medical Physics,2020,37(7):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
[10]王乾梁,石宏理.基于改进YOLO V3的肺结节检测方法[J].中国医学物理学杂志,2021,38(9):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
WANG Qianliang,SHI Hongli,et al.Pulmonary nodule detection based on improved YOLO V3[J].Chinese Journal of Medical Physics,2021,38(7):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
[11]刘雲,王一达,张成秀,等.基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J].中国医学物理学杂志,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
LIU Yun,WANG Yida,ZHANG Chengxiu,et al.Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J].Chinese Journal of Medical Physics,2022,39(7):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]