[1]唐思源,刘燕茹,杨敏,等.基于CT图像的肺结节检测与识别[J].中国医学物理学杂志,2019,36(7):800-807.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
 TANG Siyuan,LIU Yanru,YANG Min,et al.Detection and recognition of pulmonary nodules based on CT images[J].Chinese Journal of Medical Physics,2019,36(7):800-807.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
点击复制

基于CT图像的肺结节检测与识别()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
36卷
期数:
2019年第7期
页码:
800-807
栏目:
医学影像物理
出版日期:
2019-07-25

文章信息/Info

Title:
Detection and recognition of pulmonary nodules based on CT images
文章编号:
1005-202X(2019)07-0800-08
作者:
唐思源1刘燕茹2杨敏1徐瑞英1
1. 内蒙古科技大学包头医学院计算机科学与技术系,内蒙古包头014040;2. 内蒙古科技大学包头医学院医学技术系,内蒙古包 头014040
Author(s):
TANG Siyuan1 LIU Yanru2 YANG Min1XU Ruiying1
1. Department of Computer Science and Technology, Baotou Medical College of Inner Mongolia University of Science & Technology, Baotou 014040, China; 2. Department of Medical Technology, Baotou Medical College of Inner Mongolia University of Science & Technology, Baotou 014040, China
关键词:
肺结节CT图像区域生长法多尺度高斯滤波器模糊C均值聚类算法支持向量机分类器
Keywords:
Keywords: pulmonary nodule CT image region growing method multi-scale Gaussian filter fuzzy C-means clustering support vector machine classifier
分类号:
R318;TP391.41
DOI:
DOI:10.3969/j.issn.1005-202X.2019.07.011
文献标志码:
A
摘要:
目的:将肺结节从含有背景、噪声的胸腔区域里检测并识别出来。方法:首先,将DICOM格式的医学图像转换成 JPG图像后,应用区域生长法分割出肺实质区域,去掉肺区外的干扰信息。然后,利用多尺度高斯滤波器增强图像后,应 用模糊C均值聚类算法提取肺结节感兴趣区域。最后,对肺结节特征进行提取及归一化处理,应用支持向量机分类器识 别并标记出肺结节。结果:在随机抽取的120例图像中,检测肺结节的准确率达到92.3%,分类识别肺结节的准确率达到 95.6%。实验结果表明,本文方法有效地排除了交叉状和条形状血管等干扰,实现了肺结节的精确检测和识别。结论:本 方法在保证检测和识别出正确结节的前提下,降低了误判率,算法也得到了较好的收敛。
Abstract:
Abstract: Objective To detect and identify pulmonary nodules from thoracic regions with background and noise. Methods After DICOM-format medical images were converted into JPG images, region growing method was applied to segment lung parenchyma and remove interference information outside lung area. Subsequently, multi-scale Gaussian filter was used to enhance images, and fuzzy C-means clustering algorithm was applied to extract regions of interest of pulmonary nodules. Finally, the features of pulmonary nodules were extracted and normalized, and the pulmonary nodules were identified and marked with support vector machine classifier. Results For the random sample of 120 images, the detection rate of pulmonary nodules reached 92.3% and the accuracy rate of the classification and recognition of pulmonary nodules was up to 95.6%. The experimental results revealed that using the proposed method could effectively eliminate the disturbances from crossing- and strip-shaped blood vessels and other disturbances, realizing an accurate detection and recognition of pulmonary nodules. Conclusion Using the proposed method can not only achieve an accurate detection and recognition of pulmonary nodules, but also reduce misjudgment rate. Moreover, the proposed algorithm has a better convergence.

相似文献/References:

[1]谷珊珊,张怀文,王运来.基于水平集稳健特征统计算法的脑肿瘤自动分割研究[J].中国医学物理学杂志,2016,33(1):63.[doi:10.3969/j.issn.1005-202X.2016.01.014]
 [J].Chinese Journal of Medical Physics,2016,33(7):63.[doi:10.3969/j.issn.1005-202X.2016.01.014]
[2]王净巍,岳士弘.人体肺癌组织电导率与CT图像灰度相关性[J].中国医学物理学杂志,2016,33(6):599.[doi:10.3969/j.issn.1005-202X.2016.06.013]
 [J].Chinese Journal of Medical Physics,2016,33(7):599.[doi:10.3969/j.issn.1005-202X.2016.06.013]
[3]牛军龙,秦现生,洪杰,等.基于CT图像重建人体膝关节3D骨骼优化模型[J].中国医学物理学杂志,2016,33(7):700.[doi:10.3969/j.issn.1005-202X.2016.07.012]
 [J].Chinese Journal of Medical Physics,2016,33(7):700.[doi:10.3969/j.issn.1005-202X.2016.07.012]
[4]邓金城,刘常春,莫珍丽,等. 基于Hessian矩阵及余弦定理的肝门静脉血管检测[J].中国医学物理学杂志,2017,34(5):462.[doi:DOI:10.3969/j.issn.1005-202X.2017.05.006]
[5]张文莉,吕晓琪,谷宇,等. 基于肺部CT图像中肺实质分割的研究进展[J].中国医学物理学杂志,2017,34(9):902.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.009]
 [J].Chinese Journal of Medical Physics,2017,34(7):902.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.009]
[6]高磊,段辉宏,周韡鼎,等. 基于CT影像的肺叶分割技术研究进展[J].中国医学物理学杂志,2019,36(10):1168.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.010]
 GAO Lei,DUAN Huihong,ZHOU Weiding,et al. Progress on CT image-based lung lobe segmentation techniques[J].Chinese Journal of Medical Physics,2019,36(7):1168.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.010]
[7]张倩雯,陈明,秦玉芳,等.基于3D ResUnet网络的肺结节分割[J].中国医学物理学杂志,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
 ZHANG Qianwen,CHEN Ming,QIN Yufang,et al.Lung nodule segmentation based on 3D ResUnet network[J].Chinese Journal of Medical Physics,2019,36(7):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
[8]徐艳,胡顺波,王基烽,等.一种基于Snake模型的脑部CT图像分割新算法[J].中国医学物理学杂志,2020,37(5):568.[doi:10.3969/j.issn.1005-202X.2020.05.007]
 XU Yan,HU Shunbo,et al.A New Segmentation Algorithm Based on Snake Model for Brain CT Image[J].Chinese Journal of Medical Physics,2020,37(7):568.[doi:10.3969/j.issn.1005-202X.2020.05.007]
[9]曹宇,邢素霞,逄键梁,等.基于改进的VGG-16卷积神经网络的肺结节检测[J].中国医学物理学杂志,2020,37(7):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
 CAO Yu,XING Suxia,PANG Jianliang,et al.Detection of pulmonary nodules based on improved VGG-16 convolution neural network[J].Chinese Journal of Medical Physics,2020,37(7):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
[10]王乾梁,石宏理.基于改进YOLO V3的肺结节检测方法[J].中国医学物理学杂志,2021,38(9):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
 WANG Qianliang,SHI Hongli,et al.Pulmonary nodule detection based on improved YOLO V3[J].Chinese Journal of Medical Physics,2021,38(7):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
[11]刘雲,王一达,张成秀,等.基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J].中国医学物理学杂志,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
 LIU Yun,WANG Yida,ZHANG Chengxiu,et al.Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J].Chinese Journal of Medical Physics,2022,39(7):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]

备注/Memo

备注/Memo:
【收稿日期】2018-12-17 【基金项目】内蒙古自治区自然科学基金(2016MS0601);包头医学院 科学研究基金(BYJJ-QM 201637);包头医学院大学生创 新创业训练计划项目(BYDCXL-201922) 【作者简介】唐思源,硕士,副教授,研究方向:医学图像处理,E-mail: 617682453@qq.com
更新日期/Last Update: 2019-07-25