[1]李晨洋,叶继伦,张旭,等.基于胸阻抗法的心排量检测系统研制[J].中国医学物理学杂志,2019,36(7):818-825.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.014]
 LI Chenyang,YE Jilun,et al.Development of cardiac output monitor based on thoracic impedance method[J].Chinese Journal of Medical Physics,2019,36(7):818-825.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.014]
点击复制

基于胸阻抗法的心排量检测系统研制()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
36卷
期数:
2019年第7期
页码:
818-825
栏目:
医学信号处理与医学仪器
出版日期:
2019-07-25

文章信息/Info

Title:
Development of cardiac output monitor based on thoracic impedance method
文章编号:
1005-202X(2019)07-0818-08
作者:
李晨洋13叶继伦123张旭123孙阳13刘杰13
1. 深圳大学医学部生物医学工程系,广东深圳518060;2. 广东省生物医学信号检测与超声成像重点实验室,广东深圳518060; 3.深圳市生物医学工程重点实验室,广东深圳518060
Author(s):
LI Chenyang1 3 YE Jilun1 2 3 ZHANG Xu1 2 3 SUN Yang1 3 LIU Jie1 3
1. Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China; 2. Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; 3. Shenzhen Key Laboratory of Biomedical Engineering, Shenzhen 518060, China
关键词:
心血管疾病血液动力学监测心排量胸阻抗法
Keywords:
Keywords: cardiovascular disease hemodynamic monitoring cardiac output thoracic impedance method
分类号:
R318;TP274
DOI:
DOI:10.3969/j.issn.1005-202X.2019.07.014
文献标志码:
A
摘要:
基于胸阻抗法和自适应滤波方法实现对心排量等血液动力学参数的实时监测与计算。首先详细介绍胸阻抗法计 算心排量的测量模型与原理,推导计算公式,对系统的心电、心阻抗、呼吸3个测量模块做了简要介绍。紧接着介绍系统 的软件部分以及滤波算法设计,算法部分重点介绍自适应滤波方法消除呼吸噪声的过程。最后将系统与德国Osypka Medical的ICON?产品以20名志愿者的采集数据进行准确性对比验证,得出每搏量SV的总体平均误差为3.70 mL,均方 根误差为6.49 mL;心排量CO的总体平均误差为0.31 L,均方根误差为0.69 L,验证了本系统的可行性。对比结果显示, 本系统实现并验证基于胸阻抗法测心排量等血液动力学参数的测量目的,具有极好的可应用性,但整个系统的工程化应 用有待后续进一步改进研究。
Abstract:
Abstract: A system based on thoracic impedance method and adaptive filtering method is developed to realize the real-time monitoring and calculation of hemodynamic parameters such as cardiac output. Firstly, the measurement model and principle of calculating cardiac output by thoracic impedance method are introduced in details; the calculation formula is deduced; and 3 modules for measuring ECG, cardiac impedance and respiration are briefly introduced. Subsequently, the software of the developed system and the design of filtering algorithm are introduced, and the process of adaptive filtering method to eliminate the breathing noise is expounded. Finally, the accuracy between the developed system and Osypka Medical ICON? was compared and validated with the use of the data collected from 20 volunteers. The overall average error of stroke volume is 3.70 mL, with a root mean square error of 6.49 mL; and the overall average error of cardiac output is 0.31 L, with a root mean square error of 0.69 L, which verifies the feasibility of the developed system. The comparison results show that the developed system realizes and verifies the measurements of hemodynamic parameters, such as cardiac output measurement based on thoracic impedance method, with an excellent applicability, but the engineering application of the whole system needs to be further investigated.

相似文献/References:

[1]刘凯,肖潮,陈贝翼,等.基于云服务的心电智能诊断系统[J].中国医学物理学杂志,2017,34(8):860.[doi:DOI:10.3969/j.issn.1005-202X.2017.08.022]
[2]巫伟强,谭建平,王帅,等. 轴流式血泵无位置传感驱动控制系统设计[J].中国医学物理学杂志,2019,36(1):77.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.015]
 WU Weiqiang,TAN Jianping,WANG Shuai,et al. Design of sensorless drive control system for axial flow blood pump[J].Chinese Journal of Medical Physics,2019,36(7):77.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.015]
[3]陈倩蓉,梁永波,赵飞骏,等. 基于心电-脉搏波的心血管疾病识别研究[J].中国医学物理学杂志,2019,36(2):210.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
 CHEN Qianrong,LIANG Yongbo,ZHAO Feijun,et al. Cardiovascular disease recognition based on electrocardiogram data and pulse wave[J].Chinese Journal of Medical Physics,2019,36(7):210.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
[4]陈刚,叶继伦,张旭,等. 心音信号的特征识别方法[J].中国医学物理学杂志,2019,36(6):710.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.018]
 CHEN Gang,YE Jilun,ZHANG Xu,et al. Heart sound signal processing and feature recognition method[J].Chinese Journal of Medical Physics,2019,36(7):710.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.018]
[5]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(7):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[6]魏良,黄海韵,鄢苏鹏,等.基于心电信号和机械信号同步传感的穿戴式心功能监测[J].中国医学物理学杂志,2023,40(11):1390.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.012]
 WEI Liang,HUANG Haiyun,YAN Supeng,et al.Wearable cardiac function monitoring based on synchronous sensing of electrocardiogram and mechanical signals[J].Chinese Journal of Medical Physics,2023,40(7):1390.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.012]

备注/Memo

备注/Memo:
【收稿日期】2019-03-22 【基金项目】广东省科技厅重大项目(2016B010108012) 【作者简介】李晨洋,硕士研究生,研究方向:生命信息检测方法、数字信 号处理,E-mail: 2388862048@qq.com 【通信作者】叶继伦,博士,教授,研究方向:生命信息检测方法、电生理 治疗、医疗器械设计及应用,E-mail: Yejilun@126.com
更新日期/Last Update: 2019-07-25