[1]包超恩,卢军丽,翟福山,等. 二维电离室矩阵中射野边界位置对调强验证Gamma通过率的影响[J].中国医学物理学杂志,2019,36(8):898-902.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.007]
 BAO Chaoen,LU Junli,ZHAI Fushan,et al. Effects of field edge position in a two-dimensional ion chamber array on Gamma passing rate[J].Chinese Journal of Medical Physics,2019,36(8):898-902.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.007]
点击复制

 二维电离室矩阵中射野边界位置对调强验证Gamma通过率的影响()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
36卷
期数:
2019年第8期
页码:
898-902
栏目:
医学放射物理
出版日期:
2019-08-26

文章信息/Info

Title:
 Effects of field edge position in a two-dimensional ion chamber array on Gamma passing rate
文章编号:
1005-202X(2019)08-0898-05
作者:
 包超恩卢军丽翟福山曹晓辉刘兵杨永锋刘明李枫
河北医科大学第三医院肿瘤科, 河北 石家庄 050051
Author(s):
 BAO Chao’en LU Junli ZHAI Fushan CAO Xiaohui LIU Bing YANG Yongfeng LIU Ming LI Feng
 Department of Oncology, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
关键词:
 放射治疗电离室矩阵γ通过率射野边界
Keywords:
 Keywords: radiotherapy ion chamber array Gamma passing rate beam edge
分类号:
R318.6;R811.1
DOI:
DOI:10.3969/j.issn.1005-202X.2019.08.007
文献标志码:
A
摘要:
目的:针对(10×10) cm2射野,探讨改变射野边界在矩阵中的位置对测量射野大小及Gamma(γ)通过率的影响。方法:使用MatriXX二维电离室矩阵测量(10×10) cm2射野剂量分布,保持射野大小不变,移动X方向准直器和在Y方向移动治疗床两种方式改变射野边界在矩阵中的位置,用OmniPro I’mRT(1.7)软件分析每次移动0.1 cm时射野边长的改变量,同时用实测剂量分布和XiO(4.40)治疗计划系统相应射野剂量分布对比,记录3%/3 mm评估标准下的γ通过率和γ为100%时的评估标准。结果:在矩阵电离室腔外间隙射野边长改变量低于0.1 cm,且在每两个电离室腔外间隙正中改变量最小接近0.05 cm;在电离室腔体内改变量高于0.1 cm,且在每一个电离室腔体中心接近最大值0.2 cm。3%/3 mm下的γ结果显示射野边界不通过点数随位置变化明显不同,在射野边长改变量最大和最小附近通过率高,全部通过的评估标准范围是2%/2 mm至6%/3 mm。结论:选取射野边界在矩阵电离室腔体中心或腔外间隙正中位置时,所测射野大小偏差最小。同时上述射野边界位置γ通过率最高,因此,在调强计划剂量分布验证中要充分考虑射野剂量梯度较大处在电离室矩阵的位置对γ通过率的影响,可调整剂量分布在矩阵中位置或改变不同评估标准详细分析γ通过率差异,从而提高γ通过率的有效性,对临床工作具有一定的指导作用。
Abstract:
 Abstract: Objective To discuss the effects of the position of a (10×10) cm2 field edge in ion chamber array on the measurement of field sizes and Gamma passing rates. Methods A two-dimensional ion chamber array detector (MatriXX) was used to measure the radiation dose distributions of a (10×10) cm2 field. The position of the field edge was changed by either moving the collimator in X direction or the treatment couch in Y direction while keeping the field size constant. The length variation of the field edge after each 0.1 cm movement was recorded and analyzed with OmniPro I’mRT(1.7) software. The measured dose distribution and the corresponding radiation dose distribution in the treatment planning system of XiO (4.40) were compared. The Gamma passing rates (3% and 3mm) and the minimum acceptance criterion at 100% Gamma passing rate were recorded. Results The length variations of the field edge in the outer space of ion chamber cavity were less than 0.1 cm, and the minimum length variation of the field edge in the middle of two outer spaces was close to 0.05 cm. However, the length variations were larger than 0.1cm when the field edge was in the ion chamber cavity and the length variation at the center of each ion chamber cavity nearly reached the maximum value of 0.2 cm. The analysis on Gamma passing rates (3% and 3 mm) showed that the number of failure points was related to the position of field edge; and that the highest Gamma passing rates were found when the length variation of field edge was maximum or minimum; and that the range of evaluation criterion at 100% Gamma passing rate was 2%/2 mm-6%/3 mm. Conclusion The deviation in the measurement of field size is minimal when the field edge is in the center of the ion chamber and in the middle of two outer spaces, and the Gamma passing rate is the highest when the field edge is as above. Therefore, the effects of the position of high dose gradient area in the ion chamber array on Gamma passing rates during the dose verification of intensity-modulated radiotherapy should be comprehensively considered. It is possible to increase the effectiveness of Gamma passing rate through adjusting the position of dose distribution in the ion chamber array or selecting the optimal evaluation criterion.

相似文献/References:

[1]武 杰,袁杭英,欧阳蓓蕾.内旋式放射治疗用面罩固定装置的设计[J].中国医学物理学杂志,2015,32(02):265.[doi:10.3969/j.issn.1005-202X.2015.02.027]
[2]司 森,吴鑫全,包尚联,等.基于GPU的蒙特卡洛放疗剂量模拟[J].中国医学物理学杂志,2015,32(01):1.[doi:10.3969/j.issn.1005-202X.2015.01.001]
[3]王 文,程梦云,杨 琪,等.基于MCNP源子程序的放射治疗剂量计算验证方法[J].中国医学物理学杂志,2015,32(01):13.[doi:10.3969/j.issn.1005-202X.2015.01.004]
[4]张一戈,邱小平,陈维军,等.基于图像引导技术对头颈部肿瘤临床摆位误差的剂量学影响[J].中国医学物理学杂志,2015,32(01):25.[doi:10.3969/j.issn.1005-202X.2015.01.007]
[5]孟慧鹏,孙小喆,王 昊,等.胸部偏后背肿瘤RapidArc采用仰卧位设计治疗计划的可行性分析[J].中国医学物理学杂志,2015,32(01):31.[doi:10.3969/j.issn.1005-202X.2015.01.008]
[6]庞皓文,孙小扬.基于快速自由形变的弹性配准算法在放疗CT中的应用[J].中国医学物理学杂志,2015,32(03):404.[doi:10.3969/j.issn.1005-202X.2015.03.023]
[7]贾卫娟,周一兵,谭维维,等.利用模拟机及挡铅托架进行放疗前的治疗模拟[J].中国医学物理学杂志,2014,31(01):4622.[doi:10.3969/j.issn.1005-202X.2014.01.007]
[8]白 雪,杜向慧,王升晔,等.半野技术结合非共面照射技术在乳腺癌胸锁联合照射中的应用[J].中国医学物理学杂志,2014,31(03):4849.[doi:10.3969/j.issn.1005-202X.2014.03.001]
[9]周 钢,田 野,陆雪官,等.乳腺癌保乳术后三种瘤床同期加量放疗技术的剂量学比较[J].中国医学物理学杂志,2014,31(03):4853.[doi:10.3969/j.issn.1005-202X.2014.03.002]
[10]李贤富,谢 力,郭飞,等.医科达Precise直线加速器快速应急处理方法探讨[J].中国医学物理学杂志,2014,31(04):4984.[doi:10.3969/j.issn.1005-202X.2014.04.003]
[11]严华刚,刘志翔,曲典,等.放疗剂量测量中相空间数据格式的标准与转换[J].中国医学物理学杂志,2017,34(4):335.[doi:DOI:10.3969/j.issn.1005-202X.2017.04.003]
[12]喻娟,胡春宏. 奥曲肽防治结直肠癌根治术后放疗致腹泻的效果[J].中国医学物理学杂志,2017,34(4):355.[doi:DOI:10.3969/j.issn.1005-202X.2017.04.007]
[13]董晓庆,林清,胡杰,等. 病人皮肤剂量监测仪在放射治疗的临床应用[J].中国医学物理学杂志,2017,34(4):363.[doi:DOI:10.3969/j.issn.1005-202X.2017.04.009]
[14]郑庆增,鞠忠建,邵莹,等. 模拟定位CT的机型及扫描参数对CT值和噪声的影响[J].中国医学物理学杂志,2017,34(5):439.[doi:DOI:10.3969/j.issn.1005-202X.2017.05.002]
[15]郑旭亮,邢晓汾,崔桐,等. 头颈肩定位体架对放射治疗剂量的影响[J].中国医学物理学杂志,2017,34(10):999.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.006]
 [J].Chinese Journal of Medical Physics,2017,34(8):999.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.006]
[16]陆春花,赵文荣,董晓庆,等. 便携式B超膀胱测定仪MD-6000在盆腔肿瘤放疗中的应用[J].中国医学物理学杂志,2017,34(11):1176.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.018]
 LU Chunhua,ZHAO Wenrong,DONG Xiaoqing,et al. Application of portable B-mode ultrasound bladder scanner MD-6000 in the radiotherapy for pelvic tumor[J].Chinese Journal of Medical Physics,2017,34(8):1176.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.018]
[17]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(8):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[18]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(8):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[19]张月美,李光俊,白龙,等. 辐射显色胶片剂量仪在放射治疗中的应用进展[J].中国医学物理学杂志,2018,35(6):638.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.004]
 ZHANG Yuemei,LI Guangjun,BAI Long,et al. Implementation and development of radiochromic film dosimeter in radiotherapy[J].Chinese Journal of Medical Physics,2018,35(8):638.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.004]
[20]洪君,单鹄声,周玉凤. 全身集成定位架对放疗靶区吸收剂量的影响[J].中国医学物理学杂志,2018,35(7):785.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.009]
 HONG Jun,SHAN Husheng,ZHOU Yufeng. Effects of systemic integrated orientation frame on absorbed dose of target areas in radiotherapy [J].Chinese Journal of Medical Physics,2018,35(8):785.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.009]

备注/Memo

备注/Memo:
 【收稿日期】2019-01-28
【基金项目】河北省卫生厅科研基金(ZD20140115)
【作者简介】包超恩,硕士研究生,主管技师,研究方向:医学物理、辐射防护、放疗质控等,E-mail: baochaoen@163.com
【通信作者】翟福山,E-mail: zhaifushan@126.com
更新日期/Last Update: 2019-08-26