[1]余锦娟,林勇. 基于机器学习的骨质疏松性骨折预测研究[J].中国医学物理学杂志,2018,35(11):1329-1333.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
 YU Jinjuan,LIN Yong. Prediction of osteoporotic fractures based on machine learning[J].Chinese Journal of Medical Physics,2018,35(11):1329-1333.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
点击复制

 基于机器学习的骨质疏松性骨折预测研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
35卷
期数:
2018年第11期
页码:
1329-1333
栏目:
医学生物物理
出版日期:
2018-11-18

文章信息/Info

Title:
 Prediction of osteoporotic fractures based on machine learning
文章编号:
1005-202X(2018)11-1329-05
作者:
 余锦娟林勇
 上海理工大学医疗器械与食品学院, 上海 200093
Author(s):
 YU Jinjuan LIN Yong
 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
关键词:
 骨质疏松性骨折机器学习XGBoost算法分类预测十折交叉验证LASSO降维
Keywords:
 Keywords: osteoporotic fracture machine learning XGBoost algorithm classification prediction ten-fold crossvalidation LASSO dimension reduction
分类号:
R318;R683
DOI:
DOI:10.3969/j.issn.1005-202X.2018.11.017
文献标志码:
A
摘要:
 复杂疾病的预测是遗传学研究的一个重要课题。本文引入机器学习的方法,将临床变量与遗传变量作为特征,对骨质疏松性骨折进行预测研究。对临床表型和遗传变异数据进行特征选择后分别使用Logistic回归分析法、XGBoost算法对临床因子特征变量、临床因子+遗传因子特征变量进行预测;最后,使用十折交叉验证法,对预测结果进行验证。实验结果表明,相较单独使用临床因子进行预测,加入遗传因子变量,XGBoost、Logistic方法的预测准确率均得到提高;另外,XGBoost方法较Logistic回归模型预测效果更好。
Abstract:
 Abstract: Prediction of complex diseases is an important topic in genetics research. Herein a machine learning method is introduced, taking clinical variables and genetic variables as features to predict osteoporotic fractures. After that the features of clinical phenotypes and heritable variations were selected, Logistic regression analysis and XGBoost algorithm were used to predict the characteristic variables of clinical factors, clinical factors and genetic factors. Finally, ten-fold cross validation method was used to verify the prediction results. The experimental results show that both the prediction accuracies of XGBoost and Logistic methods are improved after adding genetic factor variation as compared with using clinical factor alone. In addition, the XGBoost method is superior to Logistic regression model in the prediction of osteoporotic fractures.

相似文献/References:

[1]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(11):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[2]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(11):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[3]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(11):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[4]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(11):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[5]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(11):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[6]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(11):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[7]张先稳,李军,张西志,等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J].中国医学物理学杂志,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
 [J].Chinese Journal of Medical Physics,2016,33(11):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
[8]胡健,李承军,徐利明,等. 床面倾斜对剂量验证通过率的影响[J].中国医学物理学杂志,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
 [J].Chinese Journal of Medical Physics,2016,33(11):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
[9]陈亚正,肖明勇,孙春堂,等. 准直器角度对宫颈癌术后VMAT计划的影响[J].中国医学物理学杂志,2016,33(9):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
 [J].Chinese Journal of Medical Physics,2016,33(11):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
[10]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(11):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]

备注/Memo

备注/Memo:
 【收稿日期】2018-07-13
【基金项目】国家自然科学基金(31301092)
【作者简介】余锦娟,硕士在读,研究方向:医学信息工程,E-mail: jinjuan_yu@163.com
【通信作者】林勇,博士,副教授,研究方向:医学信息工程,E-mail: yong_lynn@163.com
更新日期/Last Update: 2018-11-22