[1]何兰,吴倩. 基于3D卷积神经网络的肝脏自动分割方法[J].中国医学物理学杂志,2018,35(6):680-686.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.012]
 HE Lan,WU Qian. Automatic liver segmentation based on three-dimensional convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(6):680-686.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.012]
点击复制

 基于3D卷积神经网络的肝脏自动分割方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
35卷
期数:
2018年第6期
页码:
680-686
栏目:
医学影像物理
出版日期:
2018-06-22

文章信息/Info

Title:
 Automatic liver segmentation based on three-dimensional convolutional neural network
文章编号:
1005-202X(2018)06-0680-07
作者:
 何兰吴倩
 中南民族大学, 湖北 武汉 430000
Author(s):
HE Lan WU Qian
South-Central University for Nationalities, Wuhan 430000, China
关键词:
 三维卷积神经网络深度监督机制图割先验信息肝脏分割
Keywords:
 Keywords: three-dimensional convolutional neural network depth supervision mechanism graph cut prior information liver segmentation
分类号:
R312
DOI:
DOI:10.3969/j.issn.1005-202X.2018.06.012
文献标志码:
A
摘要:
 原发性肝脏恶性肿瘤是我国高发且危害极大的恶性肿瘤。肝脏手术(如肿瘤切除、活体肝移植等)是各种常见肝脏良恶性疾病的主要治疗方法之一。从医学影像中将肝脏组织准确地分割出来,是计算机辅助肝脏疾病诊断与手术规划中一个基础且至关重要的步骤。针对肝脏分割的特异性及分割难点,提出3D卷积神经网络(3DCNN)肝脏自动分割算法模型。3DCNN基于对体数据的训练能很好地学习到肝脏图像平面与空间信息。通过将深度监督机制无缝地整合到3DCNN中,能够有效解决梯度消失或爆炸的优化问题,加快收敛速度的同时提高分辨能力。最后,将初始分割结果作为先验信息,采用基于多星凸约束的图割算法做进一步的分割优化。实验结果表明该分割模型能够将肝脏组织从腹部CT图像中精确分割。
Abstract:
 Abstract: Primary hepatic malignant tumor is an extremely harmful tumor with high incidence in China. Liver surgery (such as tumor resection, living liver transplantation, etc.) is one of the main treatments for various common benign and malignant liver diseases. The accurate segmentation of liver tissue from medical images is a fundamental and crucial step in computer-assisted liver disease diagnosis and surgical planning. Concerning the specificity and challenge of liver segmentation, an automatic segmentation algorithm model based on three-dimensional convolutional neural network (3DCNN) is proposed. 3DCNN is capable of conducting volume-to-volume learning, which can learn the plane and spatial information of liver images well. Integrating the depth supervision mechanism into 3DCNN can effectively reduce the problem of gradient disappearance or explosion, and speed up the convergence while improving the resolution. Finally, using the initial segmentation result as a priori information, the graph cut algorithm based on multi-convex constraint is used for further segmentation. Experimental results show that the segmentation model can accurately segment liver tissue from abdominal CT images.

相似文献/References:

[1]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[2]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[3]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[4]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[5]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[6]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(6):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[7]张先稳,李军,张西志,等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J].中国医学物理学杂志,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
 [J].Chinese Journal of Medical Physics,2016,33(6):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
[8]胡健,李承军,徐利明,等. 床面倾斜对剂量验证通过率的影响[J].中国医学物理学杂志,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
 [J].Chinese Journal of Medical Physics,2016,33(6):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
[9]陈亚正,肖明勇,孙春堂,等. 准直器角度对宫颈癌术后VMAT计划的影响[J].中国医学物理学杂志,2016,33(9):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
 [J].Chinese Journal of Medical Physics,2016,33(6):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
[10]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(6):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]

备注/Memo

备注/Memo:
 【收稿日期】2018-04-18
【作者简介】何兰,硕士研究生,研究方向:计算机视觉与图像处理,E-mail: 455418205@qq.com
【通信作者】吴倩,硕士研究生,研究方向:计算机视觉与图像处理,E-mail: wu137qian@qq.com
更新日期/Last Update: 2018-06-22