[1]陈倩蓉,梁永波,赵飞骏,等. 基于心电-脉搏波的心血管疾病识别研究[J].中国医学物理学杂志,2019,36(2):210-214.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
 CHEN Qianrong,LIANG Yongbo,ZHAO Feijun,et al. Cardiovascular disease recognition based on electrocardiogram data and pulse wave[J].Chinese Journal of Medical Physics,2019,36(2):210-214.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
点击复制

 基于心电-脉搏波的心血管疾病识别研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
36卷
期数:
2019年第2期
页码:
210-214
栏目:
医学信号处理与医学仪器
出版日期:
2019-02-25

文章信息/Info

Title:
 Cardiovascular disease recognition based on electrocardiogram data and pulse wave
文章编号:
1005-202X(2019)02-0210-05
作者:
 陈倩蓉1梁永波2赵飞骏2朱健铭2陈真诚2
 1.桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004; 2.桂林电子科技大学生命与环境科学学院, 广西 桂林 541004
Author(s):
 CHEN Qianrong1 LIANG Yongbo2 ZHAO Feijun2 ZHU Jianming2 CHEN Zhencheng2
 1. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China; 2. School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
关键词:
 心血管疾病脉搏波K近邻学习支持向量机
Keywords:
 Keywords: cardiovascular disease pulse wave K-nearest neighbor support vector machine
分类号:
R318;R543
DOI:
DOI:10.3969/j.issn.1005-202X.2019.02.017
文献标志码:
A
摘要:
 为实现心血管疾病的早期筛查,降低心血管疾病临床检测的成本。本研究基于上肢脉搏波传导速度(PWV)及脉搏波相关血液动力学基础理论,采集了总计51人的脉搏波与心电信号数据,提取了包括3种PWV和脉搏波特征参数总计16个特征参数,将不同的PWV与脉搏波特征组成3个样本特征数据集,分别建立了基于K近邻学习(KNN)和支持向量机(SVM)的心血管疾病识别模型。KNN模型分类准确率为66.28%,SVM模型分类准确率为84.3%,并通过对比不同PWV对模型性能的影响,确定了用于血管评估的最优脉搏波传导速度pwvm。研究表明基于SVM建立的分类模型对心血管疾病识别有一定可靠性,为低成本的心血管疾病早期筛查提供了新思路,也为穿戴式心血管系统监测提供了基础。
Abstract:
 Abstract: To achieve an early screening of cardiovascular diseases and reduce the cost of clinical detection of cardiovascular disease, a research based on pulse wave velocity (PWV) in the upper extremities and the hemodynamic theory related to pulse waves is performed. The pulse waves and electrocardiogram data of 51 volunteers were collected, and 16 feature parameters including 3 types of PWV and pulse wave features were extracted. Three sample feature data sets which are composed of different PWV and pulse wave features are used to establish two different cardiovascular diseases recognition models based on K-nearest neighbor (KNN) or support vector machine (SVM). The clssification accuracy of KNN and SVM models is 66.28% and 84.3%, respectively. By comparing the effects of different PWV on the performance of models, the optimal pwvm for vascular assessment is determined. The research results show that the SVM model is reliable in the cardiovascular disease recognition, providing a new idea for the low-cost and early screening of cardiovascular diseases and providing a basis for wearable cardiovascular system monitoring.

相似文献/References:

[1]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(2):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[2]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(2):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[3]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(2):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[4]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(2):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[5]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(2):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[6]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(2):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[7]张先稳,李军,张西志,等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J].中国医学物理学杂志,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
 [J].Chinese Journal of Medical Physics,2016,33(2):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
[8]胡健,李承军,徐利明,等. 床面倾斜对剂量验证通过率的影响[J].中国医学物理学杂志,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
 [J].Chinese Journal of Medical Physics,2016,33(2):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
[9]陈亚正,肖明勇,孙春堂,等. 准直器角度对宫颈癌术后VMAT计划的影响[J].中国医学物理学杂志,2016,33(9):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
 [J].Chinese Journal of Medical Physics,2016,33(2):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
[10]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(2):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
[11]巫伟强,谭建平,王帅,等. 轴流式血泵无位置传感驱动控制系统设计[J].中国医学物理学杂志,2019,36(1):77.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.015]
 WU Weiqiang,TAN Jianping,WANG Shuai,et al. Design of sensorless drive control system for axial flow blood pump[J].Chinese Journal of Medical Physics,2019,36(2):77.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.015]
[12]陈刚,叶继伦,张旭,等. 心音信号的特征识别方法[J].中国医学物理学杂志,2019,36(6):710.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.018]
 CHEN Gang,YE Jilun,ZHANG Xu,et al. Heart sound signal processing and feature recognition method[J].Chinese Journal of Medical Physics,2019,36(2):710.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.018]
[13]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(2):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]

备注/Memo

备注/Memo:
 【收稿日期】2018-08-06
【基金项目】国家自然科学基金重大科研仪器研制项目(61627807);广西自然科学基金(2017GXNSFGA198005);国家重点研发计划课题(2016YFC1305703);广西自然科学基金青年基金项目(2016GXNSFBA380145);广西自动检测技术与仪器重点实验室主任基金(YQ17118);2015年广西信息科学实验中心一般项目(YB1513);桂林电子科技大学研究生教育创新计划资助项目(2016YJCXB01)
【作者简介】陈倩蓉,在读研究生,主要研究:向为生物传感与智能仪器,E-mail: chenqianro@163.com
【通信作者】陈真诚,教授,博士生导师,主要研究方向:生物传感与智能仪器,E-mail: chenzhcheng@163.com
更新日期/Last Update: 2019-02-26