[1]张迪,陈真诚,梁永波,等. 协同训练算法在无创血糖检测中的应用[J].中国医学物理学杂志,2018,35(11):1295-1300.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.011]
 ZHANG Di,CHEN Zhencheng,LIANG Yongbo,et al. Application of co-training algorithm in noninvasive blood glucose detection[J].Chinese Journal of Medical Physics,2018,35(11):1295-1300.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.011]
点击复制

 协同训练算法在无创血糖检测中的应用()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
35卷
期数:
2018年第11期
页码:
1295-1300
栏目:
医学信号处理与医学仪器
出版日期:
2018-11-18

文章信息/Info

Title:
 Application of co-training algorithm in noninvasive blood glucose detection
文章编号:
1005-202X(2018)11-1295-06
作者:
 张迪1陈真诚2梁永波2吴植强3朱健铭2钟婷婷1
 1.桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004; 2.桂林电子科技大学生命与环境科学学院, 广西 桂林 541004;3.广西壮族自治区医疗器械检测中心, 广西 南宁 530021
Author(s):
 ZHANG Di1 CHEN Zhencheng2 LIANG Yongbo2 WU Zhiqiang3 ZHU Jianming2 ZHONG Tingting1
 1. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China; 2. School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; 3. Medical Devices Testing Center of Guangxi Zhuang Autonomous Region, Nanning 530021, China
关键词:
 糖尿病无创血糖检测协同训练支持向量机
Keywords:
 Keywords: database noninvasive blood glucose detection co-training support vector machine
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2018.11.011
文献标志码:
A
摘要:
 目的:在无创血糖检测方法的研究中,因无创生理参数相比血糖真值更易于获取,病理数据库中未用血糖真值标记样本的数量远大于有标记的样本,若能将未标记样本应用于传统有监督血糖预测模型的训练中,将有效扩充训练样本集并提高模型的泛化能力。 方法:在基于能量代谢守恒法的理论基础上,利用无创生理参数天然的多视图特性,将半监督学习算法应用于无创血糖的预测中,提出一种基于多视图协同训练与支持向量机技术的血糖预测算法。结果:经实验分析,在一定标记率下,基于协同训练的学习算法相比传统的有监督学习算法预测误差更小。说明未标记样本能够有效提升原始模型的泛化能力。 结论:协同训练的引入,充分利用了规模较大的未标记样本,提高了模型泛化能力,并减少了血糖样本采集中标记样本的工作量,为今后无创血糖算法的研究提供了新思路。
Abstract:
Abstract: Objective In the study of noninvasive blood glucose detection, obtaining noninvasive physiological parameters is easier than obtaining true blood glucose. In the pathological database, the number of samples unlabeled with true blood glucose is much larger than that of labeled samples. This research aims to apply the unlabeled samples to the training of traditional supervised model for the prediction of blood glucose for effectively expanding the training set and improving the generalization ability of the model. Methods Based on the theory of conservation of energy metabolism and the natural multi-view characteristics of noninvasive physiological parameters, a semi-supervised learning algorithm was applied to the prediction of blood glucose. An algorithm based on multi-view co-training and support vector regression was proposed for the prediction of blood glucose. Results The experimental analysis showed that at a certain labeling rate, the prediction error of algorithm based on co-training is lower than that of traditional supervised learning algorithm, which indicated that unlabeled samples could effectively improve the generalization ability of the original model. Conclusion Co-training algorithm can fully utilize large-scale unlabeled samples, improve the generalization ability of model, and reduce the workload of labeling blood glucose samples, providing a new idea for the future research on noninvasive blood glucose algorithm.

相似文献/References:

[1]雍军光,阮 萍,沈洪涛,等.新型显微成像与分析系统在糖尿病患者红细胞定量研究中的应用[J].中国医学物理学杂志,2014,31(04):5081.[doi:10.3969/j.issn.1005-202X.2014.04.023]
[2]赵承奇,雷涛,罗二平,等.脉冲电磁场对糖尿病大鼠外周神经病变的影响[J].中国医学物理学杂志,2013,30(05):4431.[doi:10.3969/j.issn.1005-202X.2013.05.021]
[3]苑旺,梁媛媛,崔黎丽,等.正极性聚丙烯驻极体对糖尿病大鼠皮肤结构的影响[J].中国医学物理学杂志,2015,32(06):835.[doi:doi:10.3969/j.issn.1005-202X.2015.06.016]
 [J].Chinese Journal of Medical Physics,2015,32(11):835.[doi:doi:10.3969/j.issn.1005-202X.2015.06.016]
[4]余丽玲,陈婷,金浩宇,等.基于支持向量机和自回归积分滑动平均模型组合的血糖值预测[J].中国医学物理学杂志,2016,33(4):381.[doi:10.3969/j.issn.1005-202X.2016.04.012]
 [J].Chinese Journal of Medical Physics,2016,33(11):381.[doi:10.3969/j.issn.1005-202X.2016.04.012]
[5]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(11):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[6]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(11):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[7]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(11):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[8]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(11):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[9]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(11):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[10]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(11):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[11]楚轶,冯品,张薇,等. 稳恒磁场刺激对糖尿病动脉粥样硬化大鼠血清和主动脉中VEGF、TGF-β1、TNF-α和IL-6表达的影响[J].中国医学物理学杂志,2017,34(10):1045.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.016]
 [J].Chinese Journal of Medical Physics,2017,34(11):1045.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.016]
[12]郭一冰,崔栋,薛雅卓,等. 糖尿病行为量表计算工具箱的研制[J].中国医学物理学杂志,2018,35(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.015]
 GUO Yibing,CUI Dong,XUE Yazhuo,et al. Development of diabetes behavioral scale calculation toolbox[J].Chinese Journal of Medical Physics,2018,35(11):195.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.015]
[13]张嘉阳,黄河,刘子怡,等. 基于Gabor滤波器的糖尿病视网膜新生血管检测[J].中国医学物理学杂志,2018,35(8):968.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.019]
 ZHANG Jiayang,HUANG He,LIU Ziyi,et al. Gabor filter-based detection of neovascularization due to diabetic retinopathy[J].Chinese Journal of Medical Physics,2018,35(11):968.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.019]
[14]陈真诚,杜莹,邹春林,等. 基于K-Nearest Neighbor和神经网络的糖尿病分类研究[J].中国医学物理学杂志,2018,35(10):1220.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]
 CHEN Zhencheng,DU Ying,ZOU Chunlin,et al. Classification of diabetes based on K-Nearest Neighbor and neural network[J].Chinese Journal of Medical Physics,2018,35(11):1220.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]
[15]钟婷婷,张迪,陈真诚,等. 基于BP神经网络的胰岛素评价预测模型[J].中国医学物理学杂志,2018,35(11):1318.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.015]
 ZHONG Tingting,ZHANG Di,CHEN Zhencheng,et al. Insulin evaluation and prediction model based on back-propagation neural network[J].Chinese Journal of Medical Physics,2018,35(11):1318.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.015]
[16]李兰,杨伟伟,王楠. 脉冲电磁刺激对糖尿病大鼠神经病理性疼痛的影响[J].中国医学物理学杂志,2019,36(9):1082.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.017]
 LI Lan,YANG Weiwei,WANG Nan. Effects of pulsed electromagnetic field stimulation on neuropathic pain in diabetic rats[J].Chinese Journal of Medical Physics,2019,36(11):1082.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.017]

备注/Memo

备注/Memo:
【收稿日期】2018-09-20
【基金项目】国家自然科学基金重大科研仪器研制项目(61627807);广西自然科学基金(2017GXNSFGA198005);国家重点研发计划课题(2016YFC1305703);广西自然科学基金青年基金项目(2016GXNSFBA380145);广西自动检测技术与仪器重点实验室主任基金(YQ17118);广西信息科学实验中心一般项目(YB1513)
【作者简介】张迪,硕士研究生,研究方向:生物传感与智能仪器,E-mail: zd9258@gmail.com
【通信作者】吴植强,副主任技师,主要从事医疗器械检验检测和管理工作,E-mail: wzqnn@126.com
更新日期/Last Update: 2018-11-22