[1]陈真诚,杜莹,邹春林,等. 基于K-Nearest Neighbor和神经网络的糖尿病分类研究[J].中国医学物理学杂志,2018,35(10):1220-1124.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]
 CHEN Zhencheng,DU Ying,ZOU Chunlin,et al. Classification of diabetes based on K-Nearest Neighbor and neural network[J].Chinese Journal of Medical Physics,2018,35(10):1220-1124.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]
点击复制

 基于K-Nearest Neighbor和神经网络的糖尿病分类研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
35卷
期数:
2018年第10期
页码:
1220-1124
栏目:
医学生物物理
出版日期:
2018-10-25

文章信息/Info

Title:
 Classification of diabetes based on K-Nearest Neighbor and neural network
文章编号:
1005-202X(2018)10-1220-05
作者:
 陈真诚1杜莹2邹春林3梁永波1吴植强4朱健铭1
 1.桂林电子科技大学生命与环境科学学院, 广西 桂林 541004; 2.桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004;3.广西医科大学转化医学研究中心, 广西 南宁530021; 4.广西壮族自治区医疗器械检测中心, 广西 南宁 530021
Author(s):
 CHEN Zhencheng1 DU Ying2 ZOU Chunlin3 LIANG Yongbo1 WU Zhiqiang4 ZHU Jianming1
 1. School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; 2. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China; 3. Transforming Medical Research Center, Guangxi Medical University, Nanning 530021, China; 4. Medical Devices Testing Center of Guangxi Zhuang Autonomous Region, Nanning 530021, China
关键词:
 糖尿病糖化血红蛋白空腹血糖KNN神经网络食蟹猴
Keywords:
 Keywords: diabetes glycosylated hemoglobin fasting blood glucose K-Nearest Neighbor neural network cynomolgus monkey
分类号:
R318;Q819
DOI:
DOI:10.3969/j.issn.1005-202X.2018.010.022
文献标志码:
A
摘要:
 为实现糖尿病的早期筛查,提高对糖尿病分类的准确度,在研究有关糖尿病危险因素的基础上,增加糖化血红蛋白作为糖尿病早期筛查的特征之一。研究中选取与人类最为相似的食蟹猴作为研究对象,利用年龄、血压、腹围、BMI、糖化血红蛋白以及空腹血糖作为特征输入,将正常、糖尿病前期和糖尿病作为类别输出,利用K-Nearest Neighbor(KNN)和神经网络两种方法对其分类。发现在增加糖化血红蛋白作为分类特征之一时,KNN(K=3)和神经网络的分类准确率分别为81.8%和92.6%,明显高于没有这一特征时的准确率(68.1%和89.7%),KNN和神经网络都可以对食蟹猴数据进行分类和识别,起到早期筛查作用。
Abstract:
 Abstract: In order to achieve the early screening for diabetes and improve the accuracy of classification of diabetes, on the basis of studying the risk factors of diabetes, glycosylated hemoglobin is added as one of the features in the early screening for diabetes. Herein cynomolgus monkeys that are most similar to humans were selected as the study subjects. Several features, such as age, blood pressure, abdominal circumference, body mass index, glycated hemoglobin and fasting blood glucose, are chosen as inputs, while normal, prediabetes and diabetes are output as categories. Both K-Nearest Neighbor (KNN) and neural network are used to classify diabetes. When glycosylated hemoglobin is added as one of the classification features, the accuracy of classification using KNN (K=3) and neural network is 81.8% and 92.6%, respectively, significantly higher than the accuracy which is obtained without considering the feature of glycosylated hemoglobin (68.1% and 89.7%). Therefore, both KNN and neural network can classify and identify the data of cynomolgus monkey and achieve an early screening for diabetes.

相似文献/References:

[1]雍军光,阮 萍,沈洪涛,等.新型显微成像与分析系统在糖尿病患者红细胞定量研究中的应用[J].中国医学物理学杂志,2014,31(04):5081.[doi:10.3969/j.issn.1005-202X.2014.04.023]
[2]赵承奇,雷涛,罗二平,等.脉冲电磁场对糖尿病大鼠外周神经病变的影响[J].中国医学物理学杂志,2013,30(05):4431.[doi:10.3969/j.issn.1005-202X.2013.05.021]
[3]苑旺,梁媛媛,崔黎丽,等.正极性聚丙烯驻极体对糖尿病大鼠皮肤结构的影响[J].中国医学物理学杂志,2015,32(06):835.[doi:doi:10.3969/j.issn.1005-202X.2015.06.016]
 [J].Chinese Journal of Medical Physics,2015,32(10):835.[doi:doi:10.3969/j.issn.1005-202X.2015.06.016]
[4]余丽玲,陈婷,金浩宇,等.基于支持向量机和自回归积分滑动平均模型组合的血糖值预测[J].中国医学物理学杂志,2016,33(4):381.[doi:10.3969/j.issn.1005-202X.2016.04.012]
 [J].Chinese Journal of Medical Physics,2016,33(10):381.[doi:10.3969/j.issn.1005-202X.2016.04.012]
[5]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(10):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[6]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(10):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[7]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(10):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[8]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(10):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[9]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(10):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[10]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(10):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[11]楚轶,冯品,张薇,等. 稳恒磁场刺激对糖尿病动脉粥样硬化大鼠血清和主动脉中VEGF、TGF-β1、TNF-α和IL-6表达的影响[J].中国医学物理学杂志,2017,34(10):1045.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.016]
 [J].Chinese Journal of Medical Physics,2017,34(10):1045.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.016]
[12]郭一冰,崔栋,薛雅卓,等. 糖尿病行为量表计算工具箱的研制[J].中国医学物理学杂志,2018,35(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.015]
 GUO Yibing,CUI Dong,XUE Yazhuo,et al. Development of diabetes behavioral scale calculation toolbox[J].Chinese Journal of Medical Physics,2018,35(10):195.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.015]
[13]张嘉阳,黄河,刘子怡,等. 基于Gabor滤波器的糖尿病视网膜新生血管检测[J].中国医学物理学杂志,2018,35(8):968.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.019]
 ZHANG Jiayang,HUANG He,LIU Ziyi,et al. Gabor filter-based detection of neovascularization due to diabetic retinopathy[J].Chinese Journal of Medical Physics,2018,35(10):968.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.019]
[14]张迪,陈真诚,梁永波,等. 协同训练算法在无创血糖检测中的应用[J].中国医学物理学杂志,2018,35(11):1295.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.011]
 ZHANG Di,CHEN Zhencheng,LIANG Yongbo,et al. Application of co-training algorithm in noninvasive blood glucose detection[J].Chinese Journal of Medical Physics,2018,35(10):1295.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.011]
[15]钟婷婷,张迪,陈真诚,等. 基于BP神经网络的胰岛素评价预测模型[J].中国医学物理学杂志,2018,35(11):1318.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.015]
 ZHONG Tingting,ZHANG Di,CHEN Zhencheng,et al. Insulin evaluation and prediction model based on back-propagation neural network[J].Chinese Journal of Medical Physics,2018,35(10):1318.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.015]
[16]李兰,杨伟伟,王楠. 脉冲电磁刺激对糖尿病大鼠神经病理性疼痛的影响[J].中国医学物理学杂志,2019,36(9):1082.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.017]
 LI Lan,YANG Weiwei,WANG Nan. Effects of pulsed electromagnetic field stimulation on neuropathic pain in diabetic rats[J].Chinese Journal of Medical Physics,2019,36(10):1082.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.017]

备注/Memo

备注/Memo:
【收稿日期】2018-05-25
【基金项目】国家自然科学基金重大科研仪器研制项目(61627807);广西自然科学基金(2017GXNSFGA198005);国家重点研发计划课题(2016YFC1305703);广西自然科学基金青年基金(2016GXNSFBA380145);广西自动检测技术与仪器重点实验室主任基金(YQ17118);广西信息科学实验中心一般项目(YB1513)
【作者简介】陈真诚,教授,博士生导师,研究方向:生物传感与智能仪器,E-mail: 18078842451@163.com;杜莹,研究生,研究方向:生物传感与智能仪器,E-mail: 18946072216@163.com
【通信作者】吴植强,副主任技师,主要从事医疗器械检验检测和管理工作,E-mail: wzqnn@126.com;朱健铭,博士,副教授,硕士生导师,研究方向:生物传感与智能仪器,生物医学信号处理,E-mail: zjmcsu@126.com
更新日期/Last Update: 2018-10-23