相似文献/References:
[1]玉泽伟,刘星星,方兆山. 3D虚拟软件系统在肝脏外科的应用现状[J].中国医学物理学杂志,2017,34(6):632.[doi:DOI:10.3969/j.issn.1005-202X.2017.06.018]
[J].Chinese Journal of Medical Physics,2017,34(7):632.[doi:DOI:10.3969/j.issn.1005-202X.2017.06.018]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(7):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]冯庆,戴敏,马华怡,等. 恶性血液系统疾病患者肝脏真菌感染的CT表现[J].中国医学物理学杂志,2018,35(5):549.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.010]
FENG Qing,DAI Min,MA Huayi,et al. CT characteristics of hepatic fungal infections in patients with malignant hematological diseases[J].Chinese Journal of Medical Physics,2018,35(7):549.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.010]
[4]袁世俊,李金凝,彭海腾,等.肝脏间叶性错构瘤的病理与CT表现[J].中国医学物理学杂志,2019,36(9):1029.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.007]
YUAN Shijun,LI Jinning,PENG Haiteng,et al.Pathological and CT manifestations of mesenchymal hamartoma of the liver[J].Chinese Journal of Medical Physics,2019,36(7):1029.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.007]
[5]翟明明,刘娟,罗二平,等.脉冲电磁场对模拟高原环境小鼠肝脏氧化应激的影响[J].中国医学物理学杂志,2019,36(11):1330.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.016]
ZHAI Mingming,LIU Juan,LUO Erping,et al.Effects of pulsed electromagnetic field on hepatic oxidative stress of mice in simulated high-altitude environment[J].Chinese Journal of Medical Physics,2019,36(7):1330.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.016]
[6]李渊强,吴宇雳,杨孝平.基于级联式三维卷积神经网络的肝肿瘤自动分割[J].中国医学物理学杂志,2019,36(11):1362.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.022]
LI Yuanqiang,WU Yuli,YANG Xiaoping.Automatic liver tumor segmentation based on cascaded 3D convolutional neural network[J].Chinese Journal of Medical Physics,2019,36(7):1362.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.022]
[7]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(7):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[8]余行,刘欢,傅玉川.放疗影像自动分割效果评估中几何参数与剂量学参数之间的关联性[J].中国医学物理学杂志,2021,38(5):540.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
YU Hang,LIU Huan,FU Yuchuan.Correlation between geometric parameters and dosimetric parameters in the evaluation of image auto-segmentation for radiotherapy[J].Chinese Journal of Medical Physics,2021,38(7):540.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
[9]李雪,周金治,莫春梅,等.基于特征融合的U-Net肺自动分割方法[J].中国医学物理学杂志,2021,38(6):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
LI Xue,ZHOU Jinzhi,et al.U-Net automatic lung segmentation based on feature fusion[J].Chinese Journal of Medical Physics,2021,38(7):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
[10]沈镇炯,彭昭,孟祥银,等.基于级联3D U-Net的CT和MR视交叉自动分割方法[J].中国医学物理学杂志,2021,38(8):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
SHEN Zhenjiong,PENG Zhao,MENG Xiangyin,et al.Automatic optic chiasm segmentation using CT and MRI based on cascaded 3D U-Net[J].Chinese Journal of Medical Physics,2021,38(7):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]