相似文献/References:
[1]易伟松,刘文强,陆 东,等.高光谱成像结合化学计量学诊断胃癌组织[J].中国医学物理学杂志,2015,32(01):124.[doi:10.3969/j.issn.1005-202X.2015.01.028]
[2]宋威,赵迪,鹿红,等.胃癌术后调强放疗射野角度优化的剂量学[J].中国医学物理学杂志,2015,32(06):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
[J].Chinese Journal of Medical Physics,2015,32(7):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
[3]徐子海,童蕾,陈磊,等.基于CTVision 图像引导的乳腺癌术后患者调强放疗摆位误差测量与分析[J].中国医学物理学杂志,2015,32(06):870.[doi:doi:10.3969/j.issn.1005-202X.2015.06.023]
[4]易伟松,钱辉跃,江厚敏.光纤和显微拉曼光谱结合化学计量学鉴别胃癌组织[J].中国医学物理学杂志,2016,33(2):134.[doi:10.3969/j.issn.1005-202X.2016.02.006]
[5]刘光波,刘志坤,闫慧娟,等.不同照射技术在全胃癌放疗中的剂量学比较与分析[J].中国医学物理学杂志,2016,33(11):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
[J].Chinese Journal of Medical Physics,2016,33(7):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
[6]蒋大振,刘晖,戴静,等. 胃癌调强放疗中多叶光栅3种状态的剂量学比较[J].中国医学物理学杂志,2019,36(2):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
JIANG Dazhen,LIU Hui,DAI Jing,et al. Dosimetric comparison among split-field, fixed-jaw and rotating multi-leaf collimator in the radiotherapy of gastric carcinoma[J].Chinese Journal of Medical Physics,2019,36(7):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
[7]胡志纲,刘勇强,任建,等.胃癌术后不同布野方案对调强放疗剂量分布的影响[J].中国医学物理学杂志,2019,36(12):1400.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.007]
HU Zhigang,LIU Yongqiang,REN Jian,et al.Effects of different field arrangements on the dose distribution of postoperative intensity-modulated radiotherapy for gastric cancer[J].Chinese Journal of Medical Physics,2019,36(7):1400.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.007]
[8]范显文,何二松,林昌荣,等.胃癌患者身体质量指数对腹腔镜术式选择及效果的影响[J].中国医学物理学杂志,2020,37(4):498.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.018]
FAN Xianwen,HE Ersong,LIN Changrong,et al.Effects of body mass index on the selection and efficacy of laparoscopic surgery in patients with gastric cancer[J].Chinese Journal of Medical Physics,2020,37(7):498.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.018]
[9]赵呈陆,方志军,高永彬,等.基于改进型V-net卷积神经网络的胃壁分割方法[J].中国医学物理学杂志,2021,38(10):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
ZHAO Chenglu,FANG Zhijun,GAO Yongbin,et al.Gastric wall segmentation based on improved V-net convolutional neural network[J].Chinese Journal of Medical Physics,2021,38(7):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
[10]张育,赵轶峰,苏卓彬,等.基于卷积神经网络的胃癌癌前病变图像分类方法[J].中国医学物理学杂志,2022,39(2):209.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]
ZHANG Yu,ZHAO Yifeng,SU Zhuobin,et al.Image classification of gastric precancerous lesions based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(7):209.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]